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1 Introduction

Programs often handle confidential data such as passwords, social security numbers, and medical records. While
programmers take precautions such as encryption against data leaks, an attacker may still compromise the secret via
a side-channel, i.e., observations about a non-functional property such as execution time and memory consumption.
Studies show that the side-channel attack is practical [15, 19, 32] and imposes significant security threats. A well-known
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recent side-channel attack is Spectre [31], which exploits the speculative execution feature of microprocessors to infer
confidential information. Side-channel attacks have also been reported against the RSA algorithm [15] and Google’s
Keyczar library [36].

Detecting side-channel vulnerabilities is a challenging problem. As opposed to a functionality property, e.g., a linear-
time temporal logic property, which is often interpreted over a single execution trace, the presence of side-channels is
a hyper-property, whose reasoning involves multiple traces. For detecting side-channels, both static-analysis-based
techniques [5, 18] and dynamic testing techniques [43] have been proposed. They can prove the absence of vulnerability
or find a specific vulnerability. However, they do not reveal the severity of the vulnerability. This information can
be derived via quantification [45, 46], which computes the potential amount of information leakage in bits, e.g., via
counting the possible different side-channel observations (aka side-channel partitions) and using the min-entropy
notion of quantitative information flow [54].

Once such side-channel vulnerabilities are detected and quantified, the next step is to develop a repair. The current
automated side-channel mitigation techniques mainly focus on the runtime protection of software. They either use
some monitoring solution to mask the vulnerability (e.g., see [30, 55]) or fix the vulnerabilities on IR or in the binary
levels (e.g., see [58, 59, 61]). Neither helps the developer understand the side-channel risks in their software. Existing
works have proposed different strategies to address side-channel vulnerabilities. In some domains like compression
algorithms, a common approach is to simply disable compression when it is appropriate [47]. Another strategy is to
entirely eliminate the side-channel vulnerability by removing all secret-dependent control locations [37, 61]. Such
strategies are often limited to a specific application domain and significantly degrade performance.

In this work, we focus on fixing timing side-channels, i.e., vulnerabilities that are exposed via observing execution
times. We propose our approach Pendulum1, which uses a quantitative estimation of side-channel vulnerabilities to
drive a fix localization. It then uses a pattern-based program repair technique to mitigate the identified vulnerability in
the source code and ultimately reduces the amount of information leaks in terms of side-channel partitions. In our
approach, the detection, localization, and repair of side-channel vulnerabilities are integrated as one joint process to
automate an efficient development of secure software. It allows for user involvement (e.g., prioritizing fix locations
that likely eliminate specific partitions or guiding the repair by providing loop bounds). At the same time, it can also
operate in a fully automated fashion and present the final fix suggestions to the users.

In our evaluation, we apply Pendulum to existing subjects of side-channel vulnerabilities [43, 45] as well as new
subjects. We show that Pendulum can mitigate the information leakage for 33 of 42 vulnerable programs, while for 26,
it can entirely eliminate them. Moreover, only 5 of these 33 mitigating repairs introduce functional side effects. The
repairs lead to a performance slowdown of 43.0% (average) or 2.6% (median).

In summary, our work makes the following contributions:

• themitigation of timing side-channel vulnerabilities in the source code, driven by vulnerability quantification

results, and hence, the combination of side-channel vulnerability detection and repair in a joint framework,
• focused vulnerability repairs in the source code (instead of any monitoring or IR-level solutions), which helps the
developer to understand side channel risks arising from code patterns, and
• the implementation of Pendulum and its evaluation in terms of vulnerabilitymitigation, performance degradation,
and potential side-effect introduction.

1After being repaired with our approach, a program that had a timing vulnerability can execute in constant time, regardless of the input, which is
analogous to a pendulum’s isochronism.
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2 Overview

2.1 Problem Statement

Threat Model. We adapt our threat model from a chosen-message attack [33] where an adversary picks an ideal
public input to compromise secret inputs in one trial. The adversary, who has access to the source code, can sample
secret and public inputs on their local machine arbitrarily many times and construct an ideal public input that partitions
the secret into many classes of timing observations. In the online mode, the attacker queries the target application with
the best guess, observes side channels, and maps the observation to a partition of secret inputs. Based on this threat
model, we define the following cost model to characterize the side-channel (SC) observations made by an attacker:

Definition 2.1 (Cost Model). The cost model of a deterministic program P is a tuple (𝑋,𝑌, Σ, 𝑐) where 𝑋 =

{ 𝑥1, . . . , 𝑥𝑛 } is the set of secret inputs, 𝑌 = {𝑦1, . . . , 𝑦𝑚 } is the set of public inputs, Σ ⊆ R𝑛 is a finite set of secrets,

and 𝑐 : R𝑛 × R𝑚 → N>0 is the cost function of the program over the secret and public inputs.

Cost Function. In this work, our cost function counts the number of executed bytecode instructions, assuming each
bytecode has equal weight. Since our goal is to assess, localize, and repair timing SC vulnerabilities in the source code,
we assume that the number of executed Java bytecodes is a reasonable abstraction to capture variations in the execution
times, similar to existing work in this domain [5, 18, 43–46]. It is possible to have more refined cost functions that, e.g.,
assign different weights to different bytecode instructions according to their actual execution time. However, we opted
to reuse the existing cost model from the previous work instead of studying a new one, which we will leave for future
work.

Vulnerability Quantification. Our threat model requires a quantitative analysis of SCs to characterize the number
of partitions. In particular, min entropy [54] uses the number of partitions to quantify immediate threats from SC
adversaries. Formally, let Σ𝑌=𝑝 = ⟨𝑆1, 𝑆2, . . . , 𝑆𝑘 ⟩ be the quotient space of Σ characterized by the cost observations
under the public input 𝑝 such that 𝑠, 𝑠′ ∈ 𝑆𝑖 =⇒ |𝑐 (𝑠, 𝑝) −𝑐 (𝑠′, 𝑝) | ≤ 𝜖 . Given that 𝑌 = 𝑝∗ is the single public input that
gives the maximum partitions 𝑘 , the leakage 𝐿P (measured in bits) can be computed as log2 𝑘 based on min entropy. A
program with more than one partition is considered vulnerable because an attacker who knows about the partitions and
the characteristics of the corresponding secrets can infer information about the secrets via side-channel observations.
Therefore, the attacker would be able to infer the subset 𝑆𝑖 (1 ≤ 𝑖 ≤ 𝑘) of secrets to which the actual secret input 𝑠
belongs by executing the program P with the public input 𝑝 and observing the cost 𝑐 (𝑠, 𝑝). If there were only one
partition, there would be no possibility to distinguish secrets via this side channel.

Definition 2.2 (Problem Statement). Given a vulnerable program P with disjoint public and secret input variables,

our goal is (1) to search for a set of secret values { 𝑠1, . . . , 𝑠𝑞 } and a single public input 𝑝 that characterizes the maximum

partitions 𝑘 (with 𝑘 ≤ 𝑞) in terms of SC observations. Then, (2) to identify a set of program locations Ψ : {𝜙1, . . . , 𝜙𝑙 } that
are the root causes of SCs. Finally, (3) to transform the program P at the locations Ψ into a semantically equivalent program

P′ such that the search of maximum SC partitions of P′ leads to 𝑘′ with 𝑘′ < 𝑘 , i.e., a reduced number of partitions, and

hence, to a mitigation of the SC vulnerability.

2.2 Pendulum Overview

Input and Output. As input, Pendulum takes the vulnerable program and a fuzz driver that parses the input and
feeds it to the program. As in previous works [43, 45], the driver is provided by a human who can distinguish public and
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Fig. 1. Overall workflow of Pendulum.

secret inputs. The driver does not need to call the (possibly unknown) vulnerable method directly. Its implementation
can follow a given template [43, 45] and be aided by driver generation tools [29, 63], which can identify entry points to
vulnerable program behavior and synthesize their parameters. As output, Pendulum produces a repaired program with
mitigated vulnerability.

Step 1 – Vulnerability Quantification. As shown in Figure 1, Pendulum first detects and quantifies side-channels, for
which it uses QFuzz [45]. Inspired by DifFuzz [43] and AFL [62], QFuzz fuzzes the program to maximize the number
of observed partitions. It randomly generates a public value and a set of secret values by mutating initial seed values.
QFuzz then executes the program with the public value and each secret value, observing the corresponding cost. If
the values result in more partitions than all previously generated values, QFuzz would keep them as seeds for future
mutation. As output, QFuzz provides a public value and a set of secret values that lead to the most partitions. Pendulum
retrieves the set of secret values that expose the most partitions and uses them for fix localization.

Step 2 – Fix Localization. Pendulum compares the execution traces of the secrets pairwise to identify vulnerable
basic blocks, which are then mapped to source locations. A subset of the locations are selected for repair.

Step 3 – Repair. At every selected fix location, according to the program construct that causes the vulnerability,
Pendulum transforms the program with a particular fix pattern. For example, the && operator is substituted with a
wrapper of &.

Step 4, 5 – Validation. The repair is validated from two aspects. First, QFuzz is re-run to check if the repaired program
shows reduced side-channel partitions (step 4). If this fuzz campaign shows that there are still too many partitions,
the fuzzer input from this campaign can be used to drive yet another round of localization and repair (steps 2 and 3).
This validation–repair loop can iterate until the vulnerability is reduced to an acceptable level. Secondly, the repair is
checked for (the absence of) any change in functionality (step 5). In our experiments, we manually examined every
repair and also performed regression testing using EvoSuite [24] and formal verification using SymDiff [35].

Envisioned Usage. We envision that Pendulum will help developers discover, understand, and mitigate timing
side-channel vulnerabilities, by localizing potential vulnerabilities and proposing the corresponding patches. While the
patch generation can be fully automated, aiming to fix all detected issues, the developer can also select repair locations
from the vulnerability locations identified by Pendulum. This allows the developer to balance security improvements
and performance degradations, which usually represents a trade-off in security patching. Once Pendulum generates a
patch, the developer can inspect, test, and modify it to ensure the program semantics remain unchanged before finally
applying the patch.
Manuscript submitted to ACM
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1 modPow(base , exponent , modulus , width) {
2 BigInteger r0, r1 = BigInteger.ONE , base;
3 for (int i = 0; i < width; i++) {
4 if (!exponent.testBit(width - i - 1)) {
5 r1 = fastMultiply(r0, r1).mod(modulus);
6 r0 = r0.multiply(r0).mod(modulus);
7 } else {
8 r0 = fastMultiply(r0, r1).mod(modulus);
9 r1 = r1.multiply(r1).mod(modulus);
10 }
11 }
12 return r0;
13 }
14 fastMultiply(x, y) {
15 ...
16 if (y.equals(BigInteger.ONE)) {
17 return x;
18 }
19 BigInteger z = ...;
20 return z;
21 }

Listing 1. Unsafe Exponentiation (vulnerabilities marked in red).

2.3 Illustrative Example

We explain how Pendulumworks on a method computing modular exponentiation, which is common in public-key cryp-
tography and is critical to security. The method originates from one of our experimental subjects, blazer_modpow2 [5].
In Listing 1, the method modPow computes the remainder when base (public) is raised to the power of exponent (secret)
and divided by modulus (public). Two intermediate values, r0 and r1, are updated iteratively for width times, where
width is the bit length of exponent and also public.

Suppose a QFuzz run gives the public input base=8, modulus=35, width=4, and two different secret exponents,
exp1=8 (1000 in bits) and exp2=12 (1100 in bits), which expose two different side-channel partitions. Pendulum would
compare the execution traces of the two secrets; the locations where they diverge are considered the fix locations. There
are two divergences in this case. One occurs in the second iteration, in line 4, when exp1 and exp2 test differently for
their second highest bits. The two traces do not rejoin until the third iteration, when the third highest bits of both
exponents test false. Thus they enter the true branch in line 5 and call fastMultiply(r0,r1). At the point, exp1 has
r0=29,r1=22 and takes the false branch in line 16, while exp2 has r0=22,r1=1 and takes the true branch. Therefore,
line 16 sees another divergence. Afterwards, the two traces rejoin at the fourth iteration and diverge no more.

To mitigate the vulnerability, Pendulum applies fix patterns at the two locations, as in Listing 2. At the first fix
location, starting from line 4, the original if statement is replaced with a series of conditional assignments to r0 and
r1, where we have introduced two utility methods, not and ite, which perform logical negation and if-then-else
respectively. The two utility methods are constructed in such a way that they execute in constant time, regardless of the
arguments. At the second fix location, starting from line 15, the originally early-returned value x is conditionally stored
in a new variable result, and the return is postponed to the end of the method. For this example, our experiment
shows that the fix patterns eliminate the vulnerability while preserving the program functionality.

In the rest of this paper, we describe the fix localization algorithm in Section 3 and the fix patterns in Section 4.
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1 modPow(base , exponent , modulus , width) {
2 BigInteger r0, r1 = BigInteger.ONE , base;
3 for (int i = 0; i < width; i++) {
4 boolean b = not(exponent.testBit(width - i - 1));
5 r1 = ite(b, fastMultiply(r0, r1).mod(modulus), r1);
6 r0 = ite(b, r0.multiply(r0).mod(modulus), r0);
7
8 r0 = ite(b, r0, fastMultiply(r0, r1).mod(modulus));
9 r1 = ite(b, r1, r1.multiply(r1).mod(modulus));
10 }
11 return r0;
12 }
13 fastMultiply(x, y) {
14 ...
15 BigInteger result = null;
16 boolean yIsOne = y.equals(BigInteger.ONE);
17 result = ite(yIsOne, x, result);
18 BigInteger z = ...;
19 return ite(yIsOne, result, z);
20 }

Listing 2. Safe Exponentiation (repairs marked in green).

3 Fix Localization

Fix localization helps achieve maximal vulnerability mitigation with minimal program change. Given a set of secret
values that reveal side-channel partitions, our fix localization works in two steps. First, execution traces of the secrets
are compared pairwise to find partition-inducing basic blocks, called leaky blocks. Then, the leaky blocks are mapped to
the source level.

3.1 Fix Localization at Bytecode Level

Algorithm 1 shows how to identify leaky blocks. For each pair of secrets 𝑠𝑖 and 𝑠 𝑗 representing two different partitions,
we first run the program P with the secrets to get their respective execution traces 𝑡𝑖 and 𝑡 𝑗 , where a trace is a sequence
of basic blocks. Then, 𝑡𝑖 and 𝑡 𝑗 are compared to identify the set 𝐷𝑖, 𝑗 of blocks where the traces diverge. These are leaky
blocks. The final set 𝐵 of leaky blocks is the union of all such 𝐷𝑖, 𝑗 .

At the core of Algorithm 1 is the trace comparison function, diffTraces. The two input traces, 𝑡1 and 𝑡2, are expected
to start from the same basic block, which is the first block of the method that is used as the entry point in the fuzz
driver. From there, the comparison goes along block by block (line 11–16) until the two traces diverge. The last basic
block, last, where 𝑡1 and 𝑡2 coincide, is identified as leaky (line 18–19).

After they diverge at last, 𝑡1 and 𝑡2 may or may not rejoin each other. To determine this, we take the control
flow graph of the method where last resides, insert an exit block as the successor of all blocks ending with a return
instruction, and then compute the post-dominator tree of this graph. It is worth noting that, in constructing the control
flow graph, we take care to end a basic block at any method invocation instruction, e.g., invokespecial, regardless of
whether it returns. This facilitates maintaining a call stack as we follow the traces, which is of use later. Depending on
the post-dominator of last, three cases may follow:

Case 1. In the simple scenario, the post-dominator of last is a “normal” block that is not the exit block (line 20). It
follows that 𝑡1 and 𝑡2 will join again at this post-dominator designated as next. Therefore, we find next in
the rest of both traces (line 28–31) and resume comparison from there.

Case 2. The post-dominator is the exit block, i.e., 𝑡1 and 𝑡2 will not join again before returning from the method
where last resides. We now check the call stack maintained along the way (line 11–15): if this method was
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Algorithm 1: Determining fix locations at bytecode level by comparing traces pairwise.
Input :Program P, public value 𝑦, secret values 𝑠1, 𝑠2, · · · , 𝑠𝑘
Output :Set 𝐵 of basic blocks to fix

1 𝐵 ← ∅
2 for 𝑖 ← 1 to 𝑘 do

3 for 𝑗 ← 𝑖 + 1 to 𝑘 do

4 𝑡𝑖 ← P(𝑦, 𝑠𝑖 ), 𝑡 𝑗 ← P(𝑦, 𝑠 𝑗 )
5 𝐷𝑖,𝑗 ← diffTraces(𝑡𝑖 , 𝑡 𝑗 )
6 𝐵 ← 𝐵 ∪𝐷𝑖,𝑗

7 return 𝐵

8 Function diffTraces(𝑡1, 𝑡2):
9 𝐷 ← ∅, 𝑖 ← 0, 𝑗 ← 0, stack← empty stack

10 while 𝑡𝑟𝑢𝑒 do

11 if 𝑡1 [𝑖 ] = 𝑡2 [ 𝑗 ] then
12 if 𝑡1 [𝑖 ] ends with method invocation then

13 stack.push(𝑖)

14 else if 𝑡1 [𝑖 ] ends with return instruction then

15 stack.pop()
16 𝑖 ← 𝑖 + 1, 𝑗 ← 𝑗 + 1
17 else

18 last← 𝑡1 [𝑖 − 1]
19 𝐷 ← 𝐷 ∪ { last }
20 next← postDominator(last)
21 if next = EXIT then

22 if stack.empty() then
23 break

24 else

25 𝑙 ← stack.𝑝𝑜𝑝 ( )
26 callSite← 𝑡1 [𝑙 ]
27 next← postDominator(callSite)

28 while 𝑡1 [𝑖 ] ≠ next do

29 𝑖 ← 𝑖 + 1
30 while 𝑡2 [ 𝑗 ] ≠ next do

31 𝑗 ← 𝑗 + 1

32 return D

invoked by some other method, i.e., it is not the entry method, 𝑡1 and 𝑡2 will join at the block immediately
after the call site (line 25–27), where we resume comparison.

Case 3. The post-dominator is the exit block, as in the previous case, but the call stack is now empty (line 22),
meaning that 𝑡1 and 𝑡2 will exit the entry method without ever joining again. Thus, we terminate the
comparison (line 23).

3.2 Fix Localization at Source Level

Source-level localization involves mapping leaky blocks, or rather, their ending instructions, to the source code. Such
instructions that allow more than one successor (remember that a leaky block causes execution divergence) include
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Algorithm 2:Mapping a leaky block to a source element chain.
Input :𝑏𝑙𝑜𝑐𝑘 : An identified leaky block to fix

𝐼 : A list of bytecode instructions in the method of 𝑏𝑙𝑜𝑐𝑘
𝑙𝑖𝑛𝑒_𝑡𝑎𝑏𝑙𝑒 : 𝐼 → N+: Line number table of the method that maps each bytecode instruction to source line number
𝐴𝑆𝑇 : Abstract syntax tree of the method

Output :The source element chain corresponding to the block

1 𝑏𝑟𝑎𝑛𝑐ℎ ← the last instruction of 𝑏𝑙𝑜𝑐𝑘 // must be a conditional branch

2 𝑙𝑖𝑛𝑒_𝑛𝑜 ← 𝑙𝑖𝑛𝑒_𝑡𝑎𝑏𝑙𝑒 (𝑏𝑟𝑎𝑛𝑐ℎ)
3 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 ← ⟨𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 ∈ 𝐼 | 𝑙𝑖𝑛𝑒_𝑡𝑎𝑏𝑙𝑒 (𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛) = 𝑙𝑖𝑛𝑒_𝑛𝑜 ⟩

4 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 ← ⟨𝑛𝑜𝑑𝑒 ∈ 𝐴𝑆𝑇 | 𝑛𝑜𝑑𝑒 is a statement in line 𝑙𝑖𝑛𝑒_𝑛𝑜 ⟩
5 𝑐ℎ𝑎𝑖𝑛𝑠 ← ⟨⟩ // "< >" for empty list

6 for 𝑠 in 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 do

7 𝑐ℎ𝑎𝑖𝑛𝑠 ← 𝑐ℎ𝑎𝑖𝑛𝑠 + parse_statement(s) // "+" for list concatenation; see Algorithm 3 for parsing

8 𝑘 ← index of 𝑏𝑟𝑎𝑛𝑐ℎ in 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

9 return the 𝑘-th item of 𝑐ℎ𝑎𝑖𝑛𝑠

conditional branch instructions (e.g., ifne), tableswitch, and lookupswitch. As switch statements can be converted
to if statements in principle, we consider only conditional branch instructions.

Program constructs involving conditional branches include:

• logical and comparison operators, including the not operator (!), binary comparison operators (>, <, >=, <=, !=,
==), binary logical operators (&&, ||), and the ternary operator (?:);
• if statements;
• loop statements, including for, while, and do-while.

We note that for one conditional branch in the bytecode, there is possibly a chain of responsible source code elements,
instead of a single one. This has to do with how the Java compiler generates instructions. As an example, in the statement
if(!b)foo();, if and ! jointly produce an ifne instruction, which would persist unless both elements are gone; for
example, if(b)foo(); still has one ifeq instruction. In this case, we have a chain of two elements to be fixed.

We show our overall source-level fix localization algorithm in Algorithm 2. It maps a leaky block to its corresponding
source element chain. If multiple blocks are identified as leaky, the mapping algorithm can be applied to each block
individually. In addition to the leaky block, the algorithm also takes as input all the bytecode instructions of the method
where the block is located, as well as the line number table and abstract syntax tree (AST) of the method. The line
number table can be found in the class file. It maps each instruction to a line number 𝑛, which means the instruction is
compiled from source code in line 𝑛.

Algorithm 2 starts by analyzing the bytecode. It first retrieves the last instruction of the leaky block and looks up the
line number of the instruction from the line number table (lines 1—2). Note that in the source line indicated by this
number, there may be multiple chains, thus leading to multiple conditional branch instructions. To decide which chain
corresponds to the instruction we focus on, we first get the list of instructions in the line in the order they appear in the
class file (line 3). We then parse the program statements in that line (usually a single statement) sequentially to obtain
the list of all chains in the line (lines 4—7). These chains are arranged in the same order they are compiled to bytecode.
This is a property maintained by our customized parsing algorithm (Algorithm 3, discussed in the next paragraphs).
Therefore, if the instruction we focus on is the 𝑘-th of the list of instructions, it would correspond to the 𝑘-th chain
(lines 8—9 of Algorithm 2).
Manuscript submitted to ACM



Timing Side-Channel Mitigation via Automated Program Repair 9

Algorithm 3: Finding potential fix location chains in a program statement at source level.
Input : statement: AST node that represents a statement
Output :List of source element chains

1 return parse(statement, null) Function Loc(type, next):
2 return a source location of type 𝑡𝑦𝑝𝑒 that is chained with 𝑛𝑒𝑥𝑡

3 Function parse(node, next):
4 list← ⟨⟩ // "< >" for empty list

5 if node ∼ while(𝑐𝑜𝑛𝑑 ) { 𝑏𝑙𝑜𝑐𝑘 } then // similar for do/for/if statement
6 ℎ𝑒𝑟𝑒 ← Loc(𝑊𝐻𝐼𝐿𝐸, null)
7 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 ← parse(cond , ℎ𝑒𝑟𝑒 ) ≠ ⟨⟩ ? parse(cond, ℎ𝑒𝑟𝑒 ) : ⟨ℎ𝑒𝑟𝑒 ⟩
8 list← list + 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 // "+" for list concatenation

9 for statement in block do
10 list← list + parse(𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡, null)

11 else if node ∼ !𝑐𝑜𝑛𝑑 then

12 ℎ𝑒𝑟𝑒 ← Loc(𝑁𝑂𝑇,𝑛𝑒𝑥𝑡 )
13 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 ← parse(𝑐𝑜𝑛𝑑,𝑛𝑒𝑥𝑡 ) ≠ ⟨⟩ ? parse(𝑐𝑜𝑛𝑑,𝑛𝑒𝑥𝑡 ) : ⟨ℎ𝑒𝑟𝑒 ⟩
14 list← list + 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠
15 else if node ∼ 𝑙ℎ𝑠 && 𝑟ℎ𝑠 then // similar for ||
16 ℎ𝑒𝑟𝑒 ← Loc(𝐴𝑁𝐷, null)
17 𝑙ℎ𝑠_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 ← parse(𝑙ℎ𝑠,ℎ𝑒𝑟𝑒 ) ≠ ⟨⟩ ? parse(𝑙ℎ𝑠,ℎ𝑒𝑟𝑒 ) : ⟨ℎ𝑒𝑟𝑒 ⟩
18 ℎ𝑒𝑟𝑒 ← Loc(𝐴𝑁𝐷,𝑛𝑒𝑥𝑡 )
19 𝑟ℎ𝑠_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 ← parse(𝑟ℎ𝑠,ℎ𝑒𝑟𝑒 ) ≠ ⟨⟩ ? parse(𝑟ℎ𝑠,ℎ𝑒𝑟𝑒 ) : ⟨ℎ𝑒𝑟𝑒 ⟩
20 list← list + 𝑙ℎ𝑠_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 + 𝑟ℎ𝑠_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠
21 else if node ∼ 𝑙ℎ𝑠 > 𝑟ℎ𝑠 then // similar for <, >=, <=, ==, !=
22 list← list + parse(𝑙ℎ𝑠, null) + parse(𝑟ℎ𝑠, null) + ⟨Loc(𝐺𝑅𝐸𝐴𝑇𝐸𝑅_𝑇𝐻𝐴𝑁,𝑛𝑒𝑥𝑡 ) ⟩
23 else if node ∼ 𝑐𝑜𝑛𝑑 ? 𝑙ℎ𝑠 : 𝑟ℎ𝑠 then
24 ℎ𝑒𝑟𝑒 ← Loc(𝑇𝐸𝑅𝑁𝐴𝑅𝑌, null)
25 list← list + parse(𝑐𝑜𝑛𝑑,ℎ𝑒𝑟𝑒 ) ≠ ⟨⟩ ? parse(𝑐𝑜𝑛𝑑,ℎ𝑒𝑟𝑒 ) : ⟨ℎ𝑒𝑟𝑒 ⟩
26 list← list + parse(𝑙ℎ𝑠, 𝑛𝑒𝑥𝑡 ) ≠ ⟨⟩ ? parse(𝑙ℎ𝑠, 𝑛𝑒𝑥𝑡 ) : ⟨𝑛𝑒𝑥𝑡 ⟩
27 list← list + parse(𝑟ℎ𝑠,ℎ𝑒𝑟𝑒 ) ≠ ⟨⟩ ? parse(𝑟ℎ𝑠, 𝑛𝑒𝑥𝑡 ) : ⟨𝑛𝑒𝑥𝑡 ⟩
28 else if node ∼ (𝑒𝑥𝑝𝑟 ) then
29 list← list + parse(𝑒𝑥𝑝𝑟, next)
30 else

31 for 𝑐ℎ𝑖𝑙𝑑 in child nodes of node do
32 list← list + parse(𝑐ℎ𝑖𝑙𝑑, null)

33 return list

34 Function parse_statement(statement):
35 return parse(statement, null)

An important step in the algorithm is to parse a statement for the chains of potentially leaky elements. By examining
the bytecode of programs that contain conditional branches, we have extracted rules about what source elements
compile to conditional jump instructions, in what order, and how the elements are chained. Following the observed
rules, we propose an algorithm for finding the chains in a statement, shown in Algorithm 3.

In Algorithm 3, each source element, or location, is represented by a Loc object (line 1). A Loc object has a type, e.g.,
do-while statement or a ternary operator. The type determines how the location should be repaired. Each chain is
represented by a linked list of Loc. A Loc also has a next pointer that points to another Loc. When next is not null,
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60 public static boolean hashMatches(String hashedPassword , String passwordToHash) {
61 if (hashedPassword == null || passwordToHash == null) {
62 throw new APIException("password.cannot.be.null", (Object []) null);
63 }
64
65 return hashedPassword.equals(encodeString(passwordToHash)) || hashedPassword.equals(

encodeStringSHA1(passwordToHash)) || hashedPassword.equals(incorrectlyEncodeString(
passwordToHash));

66 }

Listing 3. Vulnerable method in org.openmrs.util.Security (with original line number).

line 61: 0
line 62: 8
line 65: 22

Listing 4. Line number table of the method in Listing 3.

22: aload_0
23: aload_1
24: invokestatic encodeString
27: invokevirtual equals
30: ifne 55

33: aload_0
34: aload_1
35: invokestatic encodeStringSHA1
38: invokevirtual equals
41: ifne 55

44: aload_0
45: aload_1
46: invokestatic incorrectlyEncodeString
49: invokevirtual equals
52: ifne 59

55: iconst_1
56: goto 60

59: iconst_0

60: ireturn

Fig. 2. Control flow graph of line 65 of the method in Listing 3 (conditional jumps highlighted in gray).

it means the current element is chained with the next element. To illustrate, the chain in the if(!b)foo() example
would be Loc(NEGATION, next), where next refers to Loc(IF, null).

The main body of Algorithm 3 is the parse function. It recursively searches for all chains under an AST node. It also
takes a next parameter, which (if not null) represents a chain discovered in the previous search. Depending on the
current node’s type, the parse function may extend the next chain and create new chains. Algorithm 3 also defines the
function parse_statement used in Algorithm 2, which simply calls parse with the next parameter being null.

Source elements that can become the next include if statements, loop statements, conditional and/or operators,
and the ternary operator. For example, lines 5—10 in Algorithm 3 parse a while statement. The while statement is
represented by here in line 6. In line 7, the condition cond of the while statement is parsed recursively, with here

as the next parameter. If there is a conditional jump in cond, then that conditional jump (e.g., a negation expression,
see line 12) may be chained with this while statement and added to the result list (line 8). On the other hand, if no
conditional jump is found in cond (e.g., when the condition is a single boolean variable), then the while statement itself
would be added to the result list as a single-node chain. Finally, the statements enclosed in the while statement are
parsed recursively (lines 9—10). Other types of elements, including the not operator (line 11) and binary comparison
operators (line 21), are not passed down the AST as the next parameter but can be appended to an existing next chain
or form a chain on their own.

As an example of the overall source-level fix localization process, we explain our fix localization for the openmrs
subject taken from the benchmark of QFuzz [45], as shown in Listing 3. Our bytecode-level localization indicates a
Manuscript submitted to ACM
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Algorithm 4: Selecting fix locations.
Precondition :𝑠1, · · · , 𝑠𝑘 represent 𝑘 different secret partitions
Input :𝐿𝑖,𝑗 for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 shows set of fix locations obtained by comparing the traces of 𝑠𝑖 and 𝑠 𝑗

𝑛 is the number of locations to fix
Output :Set 𝐹 ∗𝑛 of fix locations leading to the fewest remaining partitions, where |𝐹 ∗𝑛 | = 𝑛

1 𝐿 ← ⋃
𝐿𝑖,𝑗

2 𝑆 ←
{
𝐹 ∈ 2𝐿

�� |𝐹 | = 𝑛
}

3 𝐹 ∗𝑛 ← argmin𝐹 ∈𝑆 remainingPartitions(F)
4 return 𝐹 ∗𝑛

5 Function remainingPartitions(𝐹):
6 for 𝑖 ← 1 to 𝑘 do

7 𝑝𝑎𝑟𝑒𝑛𝑡𝑖 ← 𝑖

8 for 𝑖 ← 1 to 𝑘 do

9 for 𝑗 ← 𝑖 + 1 to 𝑘 do

10 if 𝐿𝑖,𝑗 ⊆ 𝐹 then

11 𝑝𝑎𝑟𝑒𝑛𝑡 𝑗 ← 𝑝𝑎𝑟𝑒𝑛𝑡𝑖

12 𝑃 ← { 𝑝𝑎𝑟𝑒𝑛𝑡𝑖 | 1 ≤ 𝑖 ≤ 𝑘 }
13 𝑘 ′ ← |𝑃 |
14 return k’

single leaky block, which ends at instruction 30, a conditional jump. According to the line number table shown in
Listing 4, this instruction, as well as two other conditional jumps (instructions 41 and 52), belongs to line 65. In Figure 2,
we highlight the three instructions in the control flow graph of the method. We then parse line 65 to find the source
elements that compile to the three instructions. The two || operators would respectively lead to instructions 30 and
41, deciding which ones of the three boolean expressions are executed. There would also be a third conditional jump
(instruction 52), deciding whether true or false is the return value. This instruction results from both || operators
because it would persist if either operator remains. Finally, since the leaky block ends with instruction 30, we can decide
to fix the first || operator. The parsing rule of other types of elements are also listed in the parse function.

We denote this bytecode-to-source mapping with 𝑠𝐿𝑜𝑐 : for a basic block 𝑏 ending in a conditional branch instruction,
𝑠𝐿𝑜𝑐 (𝑏) is the chain of source code elements it corresponds to. Let 𝐿𝑖, 𝑗 = { 𝑠𝐿𝑜𝑐 (𝑏) | 𝑏 ∈ 𝐷𝑖, 𝑗 } and 𝐿 =

⋃
𝐿𝑖, 𝑗 .

3.3 Fix Location Selection

After identifying the vulnerable locations, it remains to select one or more of them for repair. The selection can be
either automated or manual. For example, the manual selection could be driven by the trade-off between vulnerability
mitigation and performance degradation. In this work, we propose an automated selection procedure giving the top-𝑛
fix locations that lead to the greatest vulnerability mitigation (i.e., partition reduction).

Algorithm 4 shows the selection algorithm. The core of the algorithm is the remainingPartitions function, which
computes the number of partitions that remain after the set 𝐹 of fix locations are fixed. For two different partitions
represented by secrets 𝑠𝑖 and 𝑠 𝑗 , 𝐿𝑖, 𝑗 is the set of fix locations identified by comparing the execution traces of the two
secrets. If these locations are repaired, 𝑠𝑖 and 𝑠 𝑗 are expected to have the same execution time, i.e., their respective
partitions are merged into one. With this, remainingPartitions checks, for each pair of 𝑠𝑖 and 𝑠 𝑗 , if 𝐿𝑖, 𝑗 is subsumed
by 𝐹 . If so, 𝑠𝑖 and 𝑠 𝑗 can be merged. After all merges, the number of remaining partitions is returned. The main body of
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1 public static boolean not(boolean b) {
2 boolean t = false;
3 if (b) t = false;
4 if (!b) t = true;
5 return t;
6 }
7
8 public static <T> T ite(boolean cond , T t1, T t2) {
9 /* substitute for ternary operator (?:) */
10 T t = null;
11 if (cond) t = t1;
12 if (!cond) t = t2;
13 return t;
14 }

Listing 5. Constant-time utility method examples.

Algorithm 4 leverages this function and searches for an 𝑛-element subset of fix locations that minimizes the number
of partitions left. Note that this strategy may not lead to an optimal solution, but we found that this approach works
efficiently and generates semantic preserving repairs in most cases.

4 Fix Patterns

We design fix patterns to repair the vulnerable program at the selected fix locations. We attempt to retain the program
logic while executing a constant number of instructions.

4.1 Fix Pattern 1: Logical and Comparison Operators

We design constant-time utilities to substitute unsafe operators, as exemplified in Listing 5. For the not, binary compari-
son, and ternary operators, the safe utility contains two if statements with opposite conditions; their functionalities
depend on the argument, but their costs always offset each other. For example, line 3 in Listing 5 compiles into an ifeq

instruction followed by a fall-through block that does the assignment. The assignment is executed if b is true and skipped
otherwise. Line 4 compiles alike, but the assignment is executed precisely when the assignment in line 3 is skipped.
Thus, the original operation is fulfilled with a constant number of executions. Note that the two if’s cannot be replaced
with an if-else statement, which appears “balanced” but would have an extra goto instruction in the then-branch.
For the logical operators && and ||, the utility methods are a wrapper for & and | respectively. For one thing, this gets
rid of conditional branch instructions. For another, the second operand, which may be short-circuited [10], i.e., skipped,
depending on the value of the first operand (which may in turn depend on a secret), now becomes an argument of the
utility and thus is always evaluated.

Note that these repairs are for the operator ; operands are another matter. Should the operands be vulnerable, they
would undergo separate repair. For example, if an operand is a secret-dependent method call, the body of the method
would be identified as vulnerable by the localization and repaired.

4.2 Fix Pattern 2: IF Statement

The if statement is fixed in two passes. In the first pass, any return, break, or continue within the if statement is
transformed into a series of new variable declarations and variable assignments. The second pass then rewrites the
assignments and eliminates the if keyword altogether. Below, we only describe the fix pattern for early return; the
patterns for break and continue are similar.
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+ boolean earlyReturn = false;
+ RT returnValue = DEFAULT_VALUE;

...
if (condExp) {

...
- return x;
+ returnValue = x;
+ earlyReturn = true;

}
...

- return y;
+ return ite(earlyReturn, returnValue, y);

Listing 6. Eliminate conditional return.

+ boolean cond = condExp;
- if (condExp) {

...
- var1 = exp1;
+ var1 = ite(cond, exp1, var1);

...
- } else {

...
- var2 = exp2;
+ var2 = ite(cond, var2, exp2);

...
- }

Listing 7. Eliminate if statement with conditional move.

+ int ub = estimatedLoopBound;
- for (...; condExp; ...) {
+ for (...; --ub > 0; ...) {
+ if (!condExp) {
+ break;
+ }

...
}

Listing 8. Pass 1 of Loop Repair: fix number of iterations w.r.t upper bound.

Pass 1 – Fixing early return. As shown in Listing 6, we first declare two new variables at the beginning of the method.
One is earlyReturn, a flag of whether an early return has occurred. The other is returnValue, holding the return
value in case of an early return. Second, we replace the return statement with assignments that set the flag and store the
early-returned value. Finally, for every other return statement, we make their return value a choice that is dependent
on the earlyReturn flag. This is accomplished via the constant-time ite utility (see Listing 5). We note that this repair
pattern also works if the early return is within the else-branch.

Pass 2 – Fixing if. In the second pass, all assignment statements within both branches are made conditional via the
ite utility, as shown in Listing 7. In the then-branch, when the guarding condition is false, an assignment is reduced to a
no-op; the original assignment is executed only when the guarding condition is true. The reverse is true for assignments
in the else-branch. After this, the if and else keywords can be safely removed.
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4.3 Fix Pattern 3: Loop Statements

A loop statement causes timing vulnerabilities when it iterates for a number of times that varies with the secret input
values. As such, the repair is to fix the number of iterations to a secret-independent value. This value should be an
upper bound of the number of loop iterations to preserve its functionality. It follows that, after repair, the loop may
have some extra iterations compared to before. We then make these extra iterations futile by means of a conditional
assignment, thus ensuring an unchanged functionality. Our fix pattern consists of two passes. As shown in Listing 8,
the first pass uses a loop counter based on the upper bound ub. This bound can be given by the user or derived with
automatic program analysis [27, 53]. Meanwhile, the original loop guard, condExp, is moved into the loop body to guard
a newly added break statement. At this point, the number of iterations remains unchanged because the conditional
break would always take place before ub reaches zero. But we have transferred the uncertainty from the loop guard to
the conditional break, for which we have a fix already. Hence, in the second pass, we fix the added if statement as in
Section 4.2. This allows the loop to execute some futile iterations to reach the estimated loop bound, making the loop
safe. Note that while and do-while loops can be transformed similarly.

4.4 Discussion of Repair Technique

Reason for Pattern-Based Repair. We adopt pattern-based repair because timing side-channel vulnerability has
relatively few types of root causes (as listed in Section 3.2), each of which can be tackled with a definite pattern. In this
case, pattern-based repair is far more efficient and reliable than other approaches, e.g., search-based repair.

Side Effect. We try to design fix patterns that are free of side-effects, i.e., preserving the semantics of the program-to-fix.
This is the case for a wide range of, albeit not all, real-world programs, as shown by our evaluation in Section 5. Here, we
delineate a sufficient condition for our fix patterns to be side-effect-free, which most of the programs in our evaluation
satisfy. Because our fix patterns can change the number of times a code snippet is executed (e.g., when repairing a loop),
it is desirable if the snippet either does not change the value of existing variables (so it can repeatedly execute without
having an effect), or only assigns to variables explicitly (so our fix pattern can guard the assignment with a condition
when needed). Such a property is captured by the concept of purity. Purity has varied definitions [40, 51, 52]. For our
purpose, we say that an expression is pure if it does not mutate any object or variable existing before its execution. A
statement is pure if it is an assignment statement with a pure expression on the right-hand side. Note, however, that a
pure expression is allowed to create new objects, making this definition rather flexible. With this definition of purity,
we state the following sufficient conditions for our fix patterns to be side-effect-free:

Pattern 1. the expression is pure;
Pattern 2.(a) the if condition is a pure expression;

(b) the branches of the if statement consist only of pure statements
(except the ending return/break/continue statement, if existent);

(c) these statements do not throw an exception;
(d) if an ending return statement exists and returns an expression, the returned expression is pure;

Pattern 3.(a) the loop condition is a pure expression;
(b) the loop body consists only of pure statements;
(c) these statements do not throw an exception.
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We have formally verified that, given these conditions, applying our fix patterns does not change program semantics.
The verification is via translating the pre- and post-repair code (e.g., Listing 7) into BoogiePL [20], specifying the purity
of relevant expressions and statements, and checking their equivalence with SymDiff [35]. The proof script can be
found in our replication package. Note that side effects may occur when these conditions do not hold. For example, after
the snippet if(o!=null)x+=o.size(); is transformed to cond=neq(o,null);x=ite(cond,x+o.size(),x), a null
pointer exception may arise because the o.size() would be executed even if o is null. To mitigate the problem, purity
analysis [40, 51, 52] can be performed to warn about the dissatisfaction of these conditions. Also, more sophisticated fix
patterns can be designed, which we leave to future work.

Moreover, we emphasize that a developer can investigate the side effects of a generated patch before applying it. A
fully automatic and effective way to detect side effects is to perform regression testing with test generation tools, e.g.,
EvoSuite [24]. The developer can also perform formal verification, e.g., with SymDiff [35], to rigorously verify that
the patched program is equivalent to the original program. Finally, the developer can manually inspect the patch. In
our experiment, we performed both regression testing and formal verification on the patches generated by Pendulum.
The detection results agree with our manual inspection, demonstrating the feasibility of the two approaches.

Necessity of Fix Localization. As our repair is based on patterns, it may seem that our fix localization can be replaced
with a plain search for anti-patterns in the source code, e.g., if statements. Nevertheless, such an approach would
be prone to false-positives due to the great abundance of the anti-patterns, which are no more than basic program
constructs. In contrast, our localization algorithm essentially performs a dynamic dependence analysis and thus gives
more accurate fix locations.

5 Evaluation

We explore the following research questions.

RQ1 (Fix localization) Can Pendulum find the correct fix locations for the side-channel vulnerabilities?
RQ2 (Vulnerability mitigation) To what extent does Pendulum mitigate the side-channel vulnerabilities?
RQ3 (Side effect) Does Pendulum preserve the functionality of the program-to-fix?
RQ4 (Time and space impact) How do the generated patches influence the execution time of the programs? How large

are the patches?

For RQ1–3, we also evaluate DifFuzzAR [37] as a baseline. DifFuzzAR is the state-of-the-art source-level timing
side-channel repair tool for Java that uses the bytecode to detect the vulnerability. Therefore, it is the closest work to
ours. Other related work include Debreach [47], Raccoon [49], and SC-Eliminator [61]. We do not compare with
Debreach because it works only for compressor programs. We do not compare with Raccoon and SC-Eliminator,
either, because they operate on LLVM IR rather than Java bytecode. To use Raccoon or SC-Eliminator for Java
bytecode, one would need to translate bytecode into LLVM IR, apply the repair tool, and then translate the repaired
LLVM IR back into bytecode. To the best of our knowledge, there is no tool that performs the translations reliably, thus
precluding the comparison against Raccoon and SC-Eliminator. Moreover, note that we do not compare Pendulum
with side-channel detection techniques like Antonopoulos et al. [5], Chen et al. [18], and Bang et al. [7] because
Pendulum focuses on the localization and repair of vulnerabilities. For vulnerability detection and quantification, we
choose QFuzz [45] because it represents the state of the art and is aligned with our threat model in contrast to the
adaptive threat model targeted by Bang et al. [7].
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Our tool, all subjects, and experimental results are available:

https://doi.org/10.6084/m9.figshare.20731846

5.1 Implementation Details

For vulnerability detection, we use QFuzz [45]. We replace its instrumentation with Javassist [11], which computes a
more accurate control flow graph. For fix localization, Javassist is used to do the instrumentation required for collecting
execution traces. The map from leaky blocks to the source code is derived by analyzing the line number table of the
class file and the AST of the source code using TBar [38]. Finally, the fix patterns are implemented as transformations
of the AST.

5.2 Evaluation Methodology

Subject Programs. For our evaluation benchmark, we use all subjects from QFuzz [45] that have timing side-channel
vulnerabilities; those with no or other types of vulnerabilities are excluded. We also exclude the Leak Set subjects, as
they are not real-world programs but show their results in our artifact. Additionally, we extend the benchmark with
four vulnerable programs from well-known Java security projects.

Side-Channel Types. We have manually examined the subjects for their vulnerability types (Table 1, Column Type).
According to Section 3.2, we look for secret-dependent unsafe operators, if statements, and loop statements. We also
indicate whether the if statements contain a return, break, or continue.

Evaluation Metrics. For RQ1, we compare the identified fix locations with that of the developer fix. For RQ2, we
compare the number of side-channel partitions between the original program, the Pendulum-fixed program, and the
developer fix. For RQ3, we first perform regression testing with EvoSuite [24] to detect changed functionality. For
patches that pass this step, we additional perform a formal verification using SymDiff [35]. Finally, all patches are
manually examined to not miss any side effects. For RQ1–3, the same evaluation is performed for DifFuzzAR. For
RQ4, the time impact, we compare the execution time of the original program, the Pendulum-fixed program, and the
developer fix, on the EvoSuite-generated test suite. For space impact, we count the number of lines of the patches.
Note that we have chosen to compare with real-world developer fixes because they represent how well humans can
repair vulnerabilities in a practical setting. Although these fixes may not be the only possible fix, the fact that they have
been merged into real-world programs has shown their acceptance in practice. Particularly, they show what amount of
mitigation, corresponding performance degradation, and code change is acceptable for software developers.

Evaluation Setup. We first describe the setup for Pendulum. For RQ1, as fuzzing is random, we run QFuzz for three
rounds, each 30 minutes long, for each program. Of all three runs, the set of secret values that reveal the most partitions
is used to drive fix localization. For RQ2, for the repair of subjects with a loop statement, we provide the required loop
bounds manually. The repaired programs are fuzzed with the same configuration as in RQ1; we report the greatest
number of partitions throughout all rounds. With regard to DifFuzzAR, we provide it with a required DifFuzz driver.
The very drivers in its replication package are used whenever available; we make minimal modifications, if necessary,
so that DifFuzzAR has the same entry functions in the drivers as Pendulum. For RQ4, to measure time impact, the test
suite is executed with the JUnit runner. Only the runtime spent in the program-to-fix counts; the runtime of JUnit is
excluded. Each execution is repeated 100 times, with just-in-time compilation disabled to capture the performance of
the bytecode as it is. The average runtime and the standard deviation are reported. To measure patch size, the number of
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Table 1. Results for the Fix Localization, the Vulnerability Mitigation, and the Side-Effect Testing.

Subject

Type
a

Fix Locations
b

Side-Channel Partitions
c

Regression Test Failure
e

Op If Ret Cont Brk Lop Pdl Dfz Orig Pdl Dfz Dev
d

Pdl Dfz Total

apache_ftpserver_clear ✓ ✓ ✓ 1 ⊥ ID 17 1 ID 1 0 ID 17
apache_wss4j ✓ ✓ ✓ 1 − ID 17 1 ID - 0 ID 10
blazer_array ✓ ✓ 1 = 1 = 2 1 1 2 0 0 17
blazer_login ✓ ✓ ✓ 1 ⊂ 4 𝐼 17 1 1 1 0 1 7
blazer_modpow1 ✓ ✓ 1 = 1 = 20 1 12 12 0 0 29
blazer_modpow2 ✓ ✓ ✓ 3 ⊥ 1 ⊥ 53 1 45 14 0 0 34
blazer_passwordEq ✓ ✓ ✓ 1 = 2 ⊃ 17 1 9 9 0 0 6
blazer_straightline ✓ ✓ 1 ⊥ 1 ⊥ 2 1 1 1 0 0 23
cryptomator_authfile ✓ ✓ ✓ 1 = ID 3 1 ID 1 - - -
Eclipse_jetty_1 ✓ ✓ ✓ 1 − 1 − 17 1 8 - 0 0 7
Eclipse_jetty_2 ✓ 1 − 3 − 8 1 8 - 0 3 8
Eclipse_jetty_4 ✓ 2 − 2 − 9 1 9 - 0 2 7
example_PWCheck ✓ ✓ ✓ 1 ⊂ 2 = 10 1 8 1 0 0 13
github_authmreloaded ✓ ✓ ✓ 1 ⊥ 4 ⊥ 5 1 11 1 0 0 26
jasypt_digestEquals ✓ ✓ ✓ 1 = 2 𝐷 3 1 CE 1 0 CE 60
rsa_modpow_1717 ✓ ✓ ✓ 3 − ID 49 1 ID - 0 ID 6
rsa_modpow_1964903306 ✓ ✓ ✓ 3 − ID 71 2 ID - 0 ID 7
rsa_modpow_834443 ✓ ✓ ✓ 3 − ID 69 2 ID - 0 ID 6
shiro_hashEquals ✓ ✓ ✓ 1 = 2 𝐷 5 1 5 1 0 6 53
stac_ibasys ✓ ✓ ✓ 2 − 1 − 9 9 9 - 0 0 6
themis_boot-stateless-auth ✓ ✓ ✓ 1 = 1 𝐷 33 2 15 2 0 0 20
themis_jdk ✓ ✓ ✓ 1 ⊥ 2 ⊥ 2 1 1 1 0 0 6
themis_oacc ✓ ✓ ✓ 1 − 2 − 12 1 17 - 0 2 13
themis_openmrs-core ✓ 1 − ID 2 1 ID - 0 ID 25
themis_orientdb ✓ ✓ ✓ 1 ⊥ 3 ⊥ 17 1 17 1 0 0 51
themis_picketbox ✓ ✓ ✓ 1 ⊥ 1 ⊥ 17 1 17 1 0 2 10
themis_spring-security ✓ ✓ ✓ 1 ⊂ 2 = 2 1 16 1 0 2 5
tink_multiply ✓ 1 = ID 2 1 ID 1 0 ID 10
apache_ftpserver_md5 ✓ ✓ ✓ 2 ⊥ ID 7 6 ID 1 0 ID 21
apache_ftpserver_salted_encrypt ✓ ✓ 1 ⊥ ID 74 1 ID 76 - - -
apache_ftpserver_salted ✓ ✓ ✓ 3 ⊥ ID 58 1 ID 60 - - -
blazer_gpt14 ✓ ✓ ✓ 4 ⊥ 1 ⊥ 69 13 63 25 4 0 15
blazer_k96 ✓ ✓ ✓ 3 ⊃ 1 = 84 9 77 11 1 0 12
blazer_unixlogin ✓ 1 = ID 2 2 ID 2 1 ID 8
Eclipse_jetty_3 ✓ ✓ ✓ 3 − 3 − 24 2 23 - 1 3 7
themis_jetty ✓ ✓ ✓ 2 ⊥ 4 ⊥ 14 17 20 39 1 0 8
themis_tomcat ✓ ✓ ✓ 3 ⊃ 3 ⊃ 2 2 2 2 - - -
apache_ftpserver_stringutils ✓ ✓ ✓ ✓ 2 = 4 ⊃ 17 CE 9 9 CE 0 38
blazer_loopandbranch ✓ ✓ 1 = 4 ⊃ 2 IL CE 2 IL CE 17
blazer_sanity ✓ ✓ ✓ 1 = 3 ⊃ 2 IL 1 1 IL 1 24
themis_pac4j ✓ ✓ 1 = ID 2 CE ID 2 CE ID 20
themis_pac4j_ext ✓ ✓ 1 = 1 = 2 CE 2 2 CE 0 21
a Op=unsafe operator; If=if statement; Ret/Cont/Brk=if statement also has early return/continue/break; Lop=loop statements.
b ⊂: fix locations are a subset of the developer’s. ⊃: superset. =: equal. 𝐼 : intersecting. 𝐷 : disjoint. −: dev fix not available. ⊥: dev fix alters semantics.
c ID=the repaired program is identical with the original program; CE=repair causes compilation error; IL=repair causes an infinite loop.
d Dash (-) indicates that a developer fix is not available.
e Dash (-) indicates that EvoSuite failed to generate a test suite that the original program can pass.

lines is counted for each file after they have been purged of all comments and reformatted with google-java-format;
only non-blank lines count.

Environment and Configurations. We conducted all experiments on Ubuntu 16.04 LTS on an Intel Xeon E5-2660 v4
@ 2.00GHz machine with 62GB of memory. We use OpenJDK 1.8.0_292, GCC 5.5.0, EvoSuite 1.2.0, JUnit 4.12, and
google-java-format 1.7. For QFuzz, we use the same parameters as the original QFuzz experiments.

5.3 Fix Localization (RQ1)

Table 1, Fix Locations column shows the number of fix locations identified as well as how they compare with the
developer fix. For all subjects, Pendulum (Pdl) can identify at least one fix location. Exactly one fix location is identified
for 28 out of 42 subjects, and at most four locations are identified for the others. In contrast, DifFuzzAR (Dfz) fails to
identify any fix location for 13 subjects. This is mainly because it tries to fix the entry method used by the fuzz driver,
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which is not always vulnerable. This leads it to produce “repairs” that are identical to the original programs (marked ID
in Table 1), which retain all vulnerabilities.

A developer fix is available for 31 subjects. For 14 subjects, Pendulum identifies the same locations as the developer fix.
For three subjects, Pendulum identifies a subset of the developer’s fix locations but still achieves the same vulnerability
mitigation. For two subjects, Pendulum identifies a superset of fix locations. For the remaining 12 subjects, the developer
fix changes the program logic altogether, e.g., changing string comparison to string hash comparison (themis_picketbox).
This renders a comparison meaningless, as Pendulum does not attempt logical changes.

The quality of our fix locations is further measured by Pendulum’s ability to mitigate the vulnerabilities at these
locations. And indeed, the fix locations lead to significant mitigation of the vulnerabilities (as discussed in Section 5.4),
indicating that our localization algorithm provides a solid basis for mitigating vulnerabilities.

RQ1—Fix Localization:

Pendulum can perform fix localization successfully for all 42 subjects, while DifFuzzAR fails for 13 subjects.

5.4 Vulnerability Mitigation (RQ2)

Table 1, Side-Channel Partitions column shows the number of partitions for the original program (Orig), the Pendulum-
generated fix (Pdl), the DifFuzzAR-generated fix (Dfz), and the developer fix (Dev). Note that in our evaluation, we
attempt to repair all identified locations without any selection or ranking. This is because, for most subjects (28 out
of 42), there is only one identified location. Also, by attempting to repair all locations, we can observe the maximum
possible vulnerability mitigation by Pendulum.

After being repaired by Pendulum, 33 of the 42 subjects show a reduced number of partitions. Among the 33 subjects,
26 end up with a single partition, i.e., the vulnerability has been eliminated. For four subjects, two partitions are found
after the fix. For Eclipse_jetty_3, this is due to an out-of-bound access introduced by our repair. The other three subjects
could have been completely fixed with the fix patterns; however, the relevant locations were not revealed by the set
of secrets that led to the most partitions in the localization step. Still, as the major vulnerabilities are detected and
addressed, the vulnerabilities in these three subjects are significantly mitigated. For complete vulnerability elimination,
a user can apply Pendulum iteratively. In fact, it only takes QFuzz a few seconds to reveal the residual vulnerability
in these three subjects. Another noteworthy subject is themis_jetty. Our repair seems to have increased the number
of observed partitions from 14 to 17, but the original program also has 17 partitions, as presented in the results of
QFuzz [45]. It is only due to the incompleteness of fuzzing that fewer partitions were revealed for the original program.
Still, Pendulum fails to mitigate the vulnerability here, as the repair introduces out-of-bound string accesses. Such
shortcomings can be tackled by, e.g., adding a safe utility method for array access.

In contrast, DifFuzzAR mitigates the vulnerability for only 15 subjects. Five of these are left with one partition,
while the others are often left with a considerable number of partitions. Moreover, it fails to modify the programs of 13
subjects and exacerbates the vulnerability for four subjects.

RQ2—Vulnerability Mitigation:

Pendulum is able to mitigate the vulnerability effectively for 33 of 42 subjects. For 26 of these 33 subjects, Pendulum
can entirely eliminate the side-channel vulnerability. In contrast, DifFuzzAR can mitigate the vulnerability for only
15 subjects.
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5.5 Side Effect (RQ3)

We have performed both regression testing and formal verification to check the Pendulum-generated repairs for
any side effect, i.e., change to the original program semantics. In Table 1, Side-Channel Partitions column, light shade
indicates the presence of side effects, while dark shade indicates that the repair does not change the original program at
all or prevents normal execution. Of the 42 repairs generated by Pendulum, 28 are free of side effects, among which 27
repairs reduce the number of partitions (to either one or two).

We have performed regression testing with EvoSuite, the state-of-the-art regression testing tool for Java. In Table 1,
Regression Test Failure column shows the number of generated tests (Total column) and of failing tests. For those
subjects for which EvoSuitewas unable to find a failing regression test, we additionally performed a formal verification.
We first used jar2bpl, a component of the Bixie [39] code checker, to translate the class files of the program before
and after repair into BoogiePL [20], an intermediate verification language. We then verify the equivalence of the two
program versions with SymDiff [35], an equivalence-checking tool. We have chosen this approach because BoogiePL
is a widely-used, well-established verification language. Also, the other state-of-the-art equivalence checking tools
either lack support for Java [23, 25, 41, 57] or can only handle relatively simple program differences [6]. To perform the
verification, we have written stubs for methods that jar2bpl does not model. For example, while jar2bpl models the
primitive int type, it does not model the Integer wrapper class. Therefore, we write a stub for Integer, implementing
its methods that are involved in the benchmark using the subset of Java that is modeled by jar2bpl. We also modify
SymDiff with regard to heap comparison. Originally, SymDiff considers two methods equivalent only if they allocate
exactly the same objects on the heap. We have modified SymDiff to allow for a more relaxed sense of equivalence.
We consider two methods equivalent as long as all the objects allocated in the pre-repair version remain the same
in the post-repair version. This definition allows that the post-repair method allocates some additional objects. This
modification is made mainly with the ite utility method (see Listing 5) in mind. Since the ite method is generic,
variables of primitive types (e.g., int and boolean) would be autoboxed into objects of the corresponding wrapper
classes, so additional objects are allocated on the heap. However, the additional allocation does not change program
semantics.

The main cause of changed semantics is impure method calls, within which object states are altered. Our fix pattern
omits them and only takes care of explicit assignments, thus changing the semantics. In principle, though, as long as the
program does not interact with the environment (e.g., database), impurity largely comes down to variable assignment,
which can be made time-constant with our conditional assignment construct. Another cause is object access guarded
by a null check, where our fix pattern can lead to a null pointer exception. Other failures include infinite loops (marked
IL in Table 1) and out-of-bound array access, which may result when statements inside a loop are modified.

The DifFuzzAR-generated repairs are also subjected to examination and regression testing. It is shown that only 11
repairs from DifFuzzAR mitigate the vulnerability without side effect. Also, note that the mitigation is often minor, as
in, e.g., blazer_gpt14 and blazer_k96.

RQ3—Side Effect:

28 out of 33 mitigating repairs from Pendulum are also side-effect-free, while DifFuzzAR can only generate 11 such
repairs, often providing minor vulnerability mitigation.
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Table 2. Results for the Performance and Patch Size Comparison. The time measurement is performed on the regression tests.

Subject
Average Execution Time (msec) Lines of Code

Orig Dev Pdl Δ Orig
(%)

Δ Dev
(%)

Orig Dev Pdl Δ Orig Δ Dev

apache_ftpserver_clear 38 ± 9 51 ± 8 39 ± 10 2.6 -23.5 61 54 66 5 12
apache_wss4j 45 ± 11 - 46 ± 11 2.2 - 31 - 36 5 -
blazer_array 101 ± 13 101 ± 13 103 ± 16 2.0 2.0 61 63 60 -1 -3
blazer_login 16 ± 7 15 ± 6 15 ± 7 -6.3 0.0 21 28 28 7 0
blazer_modpow1 293 ± 17 358 ± 19 361 ± 19 23.2 0.8 128 130 128 0 -2
blazer_modpow2 23941 ± 392 168891 ± 80126 174218 ± 83028 627.7 3.2 92 92 100 8 8
blazer_passwordEq 13 ± 7 13 ± 6 14 ± 4 7.7 7.7 20 20 26 6 6
blazer_straightline 174 ± 17 176 ± 16 182 ± 15 4.6 3.4 323 112 322 -1 210
Eclipse_jetty_1 16 ± 5 - 18 ± 10 12.5 - 8 - 15 7 -
Eclipse_jetty_2 17 ± 5 - 18 ± 5 5.9 - 9 - 10 1 -
Eclipse_jetty_4 17 ± 8 - 16 ± 6 -5.9 - 11 - 12 1 -
example_PWCheck 28 ± 9 28 ± 7 27 ± 7 -3.6 -3.6 35 41 42 7 1
github_authmreloaded 196 ± 17 196 ± 16 200 ± 17 2.0 2.0 65 54 70 5 16
rsa_modpow_1717 14 ± 6 - 20 ± 5 42.9 - 25 - 27 2 -
rsa_modpow_1964903306 16 ± 6 - 22 ± 7 37.5 - 26 - 28 2 -
rsa_modpow_834443 14 ± 7 - 18 ± 7 28.6 - 26 - 28 2 -
stac_ibasys 99 ± 12 - 98 ± 9 -1.0 - 62 - 63 1 -
themis_boot-stateless-auth 2060 ± 36 2058 ± 46 2078 ± 50 0.9 1.0 87 89 94 7 5
themis_jdk 13 ± 7 13 ± 6 13 ± 5 0.0 0.0 12 13 19 7 6
themis_oacc 34 ± 8 - 35 ± 10 2.9 - 41 - 48 7 -
themis_openmrs-core 248 ± 16 - 250 ± 16 0.8 - 174 - 175 1 -
themis_orientdb 22484 ± 58 111166 ± 13218 105329 ± 6218 368.5 -5.3 210 211 215 5 4
themis_picketbox 22 ± 11 21 ± 6 22 ± 6 0.0 4.8 23 18 30 7 12
themis_spring-security 12 ± 9 11 ± 3 11 ± 4 -8.3 0.0 28 25 33 5 8
jasypt_digestEquals 545 ± 37 545 ± 36 589 ± 38 8.1 8.1 359 365 366 7 1
shiro_hashEquals 940 ± 35 955 ± 32 944 ± 32 0.4 -1.2 148 146 153 5 7
tink_multiply 64 ± 12 62 ± 9 67 ± 11 4.7 8.1 19 19 22 3 3
Average - - - 43.0 0.4 - - - 4.2 16.9
Median - - - 2.6 1.0 - - - 5.0 6.0

5.6 Time and Space Impact (RQ4)

For RQ4, we include only subjects that have a regression test suite as well as a side-effect-free, mitigating repair from
Pendulum. We do not compare with DifFuzzAR because it generates few such repairs.

Table 2, Average Execution Time column compares the runtime of the regression test suite between the original
program, the developer fix, and the Pendulum-fixed program. Column ΔOrig shows the percentage difference to
the original program, which is 43.0% on average. The slowdown is more significant where a loop is repaired (e.g.,
blazer_modpow2) and modest elsewhere; the median is thus only 2.6%. Column ΔDev shows an average slowdown
of 0.4% compared with the developer fix. Furthermore, we want to emphasize that we are evaluating the maximum

performance impact the repair has on the program because we repair all fix locations in our evaluation, as mentioned
in Section 5.4. In practice, however, which and how many locations to repair remains a trade-off between security
and performance that needs to be decided by the developer because it depends on the specific situation. Completely
eliminating all side-channel partitions can potentially have a significant impact on the performance. Pendulum can be
adjusted to mitigate only a subset of the identified locations, and the user can also explore different configurations
to decide which amount of mitigation is suitable for their specific case. To illustrate this trade-off, we selected four
subjects from our benchmark, for which Pendulum identified multiple fix locations and successfully mitigated the
vulnerability. We then use Pendulum to partially fix these subjects and measure the vulnerability reduction and the
performance. The results are shown in Table 3. As more locations are fixed, these four subjects gradually have fewer
side-channel partitions, while their execution time can increase. Deciding on such a trade-off is eventually up to the
user; Pendulum produces source-level repairs, providing them with the means to make an informed decision.
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Table 3. The change of side-channel partitions and execution time as more locations are fixed. Pdl-1 refers to repairing 1 location

using Pendulum; similar for Pdl-2 and Pdl-3. Note that Eclipse_jetty_4 has only two fix locations and thus does not have Pdl-3.

Subject
Side-Channel Partitions Average Execution Time (msec)

Orig Pdl-1 Pdl-2 Pdl-3 Orig Pdl-1 Pdl-2 Pdl-3
Eclipse_jetty_4 9 2 1 - 17 ± 8 16 ± 4 16 ± 6 -
rsa_modpow_1717 49 39 21 1 14 ± 6 14 ± 3 14 ± 4 20 ± 5
rsa_modpow_1964903306 71 39 12 2 14 ± 7 14 ± 4 14 ± 3 18 ± 7
rsa_modpow_834443 69 62 15 2 16 ± 6 17 ± 3 17 ± 4 22 ± 5

In terms of space, or file size, Pendulum implements the utility methods in 105 lines. Apart from this, Pendulum
increases the size of the file-to-fix. Table 2, Lines of Code column shows that Pendulum’s repair is on average 4.2 lines
larger than the original program and 16.9 lines larger than the developer fix. Excluding blazer_straightline, where the
developer fix completely changes the program semantics, Pendulum’s repair is on average six lines larger than the
developer fix. Developer fixes can be small due to the use of additional library methods and occasional changes in the
program semantics.

RQ4—Time and Space Impact:

The Pendulum-generated repairs have an average slowdown of 43.0% and a median slowdown of 2.6%. This
performance is close to that of the developer fixes. Our median repairs are five lines larger than the original code and
six lines larger than the developer fixes.

6 Threats to Validity

External Validity. To mitigate the threat that our approach may not generalize, we use a wide range of micro-
benchmarks and real-world Java programs for our experimental subjects. Specifically, they are an extended version of
QFuzz’s benchmark [45], which is the state-of-the-art side-channel detection benchmark for Java. Additionally, there is
a threat that our source-level repair gets subsumed by compiler optimizations [21], and further, that the compiler or
interpreter itself introduces side-channel vulnerabilities [13]. However, our experiments show that the vulnerabilities are
mitigated. Further, we intentionally target the source code to aid the developer’s comprehension and fix the vulnerability
where it is introduced, if it can be fixed in the source code at all.

Internal Validity. Our approach uses a fuzzing-based tool, QFuzz [45]. To counter the randomness and incompleteness
of fuzzing and obtain an accurate quantification of side-channel vulnerabilities, we repeat every fuzz campaign for three
times, with the same (validated) setup reported in QFuzz. The data obtained for the original programs are consistent
with those reported in QFuzz. To assess the possible side effects of the generated repairs, we corroborate our manual
examination with a regression test performed with EvoSuite [24]. While testing is incomplete, EvoSuite is one of
the state-of-the-art Java test case generation techniques and achieves high code coverage. For all repairs that pass the
regression tests, we formally verified that they are semantically equivalent to the original program using SymDiff [35].
We also open-source our tool and all subjects, experimental setups, and repairs for public scrutiny.

Iterative Repair. In our experiments, we do not perform an iterative repair (as shown by the back edge from step
four to step two in Figure 1) for ease of presentation. In practice, iterative detection and repair can help counter the
incompleteness of fuzzing and incrementally reduce residual vulnerability. For example, the vulnerability of the subjects
rsa_modpow_834443 and stac_ibasys can be eliminated with one more iteration.
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7 Related Work

Refactoring. Program refactoring transforms the code to improve the system design while preserving the functional-
ity [1]. While we also attempt to preserve the functionality, we aim to change the program’s non-functional behavior,
i.e., timing, to mitigate the side-channel vulnerability. Therefore, we regard our approach as program repair rather than
program refactoring.

Synthesis. FaCT [16] is a cryptographic domain-specific language that can be transformed into constant-time LLVM
bitcode. Rather than synthesize new programs, we aim to repair existing Java programs.

Verification and Testing. Approaches have been proposed to verify the absence of timing side-channel vulnerability
at source code level [4, 42, 48], intermediate representation (IR) level [3, 5, 18, 50], assembly level [2, 12] and binary
level [22, 34]. There is also an approach for proving that the cryptographic constant-time property of a program
is preserved during compilation [8]. Testing approaches generate concrete input to expose the presence of timing
side-channel vulnerabilities. The input is generated with fuzz testing [9, 28, 43, 45] or symbolic execution [14, 17, 46].
The verification and testing approaches do not aim to mitigate the vulnerability but provide a basis for doing so. In
particular, our approach obtains a quantification of the vulnerability with QFuzz [45], which is then used to drive the
fix localization.

Localization. CacheD [60] and SymSC [26] use symbolic execution and constraint solving to localize timing side-
channels, which are expensive computations. SC-Eliminator [61] uses static taint analysis to find secret-dependent
instructions, which has a high false-positive rate because of overtainting. Fuchsia [56] uses a decision tree (DT) to
explain side-channel partitions and takes the discriminants as leaky blocks. The DT cannot handle branch-induced
side-channels properly because it always blames some block in either branch rather than the branching block; in other
words, it locates the effect rather than the cause. It also cannot distinguish between multiple blocks that always have the
same execution counts. Besides, it is unclear how many discriminants to take from the DT as fix locations. Different from
these works, our localization is computationally cheap, accurate, and handles different program constructs properly.

Repair. Debreach [47] mitigates timing side-channels exclusively for compressor programs. Raccoon [49] and
SC-Eliminator [61] repair timing side-channels in LLVM IR, and hence, follow a different strategy than Pendulum.
Our repair happens from the developer’s perspective, providing them with fine-grained control to review fixes and
trade between performance and security by carefully prioritizing the fixes. IR-based repair techniques are orthogonal to
our approach and can be used if a source code-based repair is not feasible. DifFuzzAR [37] is the closest to our work,
which mitigates timing side-channels for Java programs at the source level. It assumes that the vulnerable method is
known, which may not be the case. Even when it works on the correct method, its fix patterns are far less effective than
ours, as shown by our experiment.

8 Conclusion

In this paper, we present a first approach for localizing timing side-channel vulnerabilities and mitigating them at
source code automatically via program repair. Our tool Pendulum integrates a quantitative fuzzing technique with
fault localization to transform side-channel vulnerable programs into safe ones using a set of repair patterns. We found
that Pendulum can effectively mitigate side-channel vulnerabilities in a large set of real-world Java applications with
minimal side effects and performance degradation. As a future direction, our approach of dynamic fix localization
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combined with pattern-based repair may be extended to other side-channel vulnerability types, e.g., cache-related
timing vulnerabilities. Furthermore, the incompleteness of our dynamic analysis for side-channel detection can be
mitigated by combining it with a more conservative static analysis, e.g., based on anti-patterns. We imagine that such a
hybrid detection combined with our repair approach can achieve an even better overall framework.
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