
Symbolic Pathfinder for SV-COMP

Yannic Noller1, Corina S. Păsăreanu2,3, Aymeric Fromherz2, Xuan-Bach D.
Le2, and Willem Visser4

1 Humboldt-Universität zu Berlin, Germany
2 Carnegie Mellon University, USA

3 NASA Ames Research Center, USA
4 Stellenbosch University, South Africa

Abstract. This paper describes the benchmark entry for Symbolic Pathfinder,
a symbolic execution tool for Java bytecode. We give a brief description
of the tool and we describe the particular run configuration that was
used in the SV-COMP competition. Furthermore, we comment on the
competition results and we outline some directions for future work.

1 Verification Approach

Symbolic Pathfinder (SPF) is a program analysis tool for Java bytecode; the
tool is based on symbolic execution. In this approach, programs are executed
on symbolic inputs representing multiple concrete inputs. Values of variables
are represented as numeric constraints, generated from the analysis of the code
structure, i.e. conditionals and other statements in the program. These con-
straints are then solved using different constraint solvers (both off-the-shelf and
built-in-house) to generate test inputs that are guaranteed to reach those parts
of the code.

The current implementation handles the following:

– Inputs of type boolean, int, long, float, double
– Input data structures, using lazy initialization [5]
– Preconditions [5]
– Multi-threading (via Java PathFinder exploration)
– Mixed symbolic/concrete execution mode [9]
– Symbolic arrays [3]
– Inputs of type String – work in progress [1]

SPF can also be used for probabilistic analysis by leveraging model counting
over symbolic constraints [2,4], and for automated program repair [6,7]. Most
recent work explores combinations of SPF with AFL-style fuzzing [8] and further
differential analysis for regression problems.

2 Software Architecture

SPF is described in detail in a journal article [10] (however, as it is an active
project, it is being updated with new features all the time). We depict the current



tool architecture in Figure 1. The input to the tool is a Java bytecode program
and a configuration file that specifies different options for analysis (as discussed
below). The output is a set of test sequences that execute different paths through
the code. The output also lists the errors that were found (e.g. exceptions, assert
violations) together with various statistics about the analysis.

Java *.class
Properties
*.jpf config

Error Report

Test Sequences

Java PathFinder
jpf-core

Symbolic PathFinder (jpf-symbc)

Systematic
Analysis

Symbolic
Execution Tree

Symbolic Arrays

Symbolic Strings

Concolic Execution

...

Constraint
Solving

Fig. 1. Symbolic PathFinder Overview.

Symbolic execution is implemented by a ”non-standard” interpretation of
bytecodes. The symbolic information is propagated via attributes associated with
program variables, operands, etc. The analysis can start from any point in the
program and it can perform mixed concrete/symbolic execution. SPF relies on
jpf-core’s search engine to explore different paths through the code. The default
search strategy is depth-first search. State matching (as implemented in jpf-core)
is usually turned off during symbolic execution.

SPF uses several constraint solvers and decision procedures, most notably Z3
and Z3bitvector, which are available from https://github.com/Z3Prover/z3.
SPF implements both incremental and non-incremental constraint solving.

3 Discussion of Strengths and Weaknesses of the
Approach

The competition results are provided on the SV-COMP website. The results
indicate that SPF outperforms the other tools in terms of correct answers (337),
cpu time (1300 s) and energy (13000 J). However, SPF also reported 6 incorrect
results, which penalized the overall final score. While the incorrect true results
are due to the bounded nature of the analysis, the incorrect false results are
due mainly to the string analysis, with the exception of one result which was
due to an error in jpf-core which has since been corrected. The string solver
was incorrectly specified and tested (i.e. the path to the string solver is hard
coded in the current implementation but we provided no string solver for the
competition).

https://github.com/Z3Prover/z3


In the future we plan to test SPF on the competition string examples using
either ABC or Z3str and to robustify the implementation. We also plan to con-
tribute to the competition by adding more interesting benchmarks, particularly
related to input data structures.

4 Tool Setup and Configuration

Symbolic PathFinder is available at https://github.com/SymbolicPathFinder/
jpf-symbc. It requires Java 8 and Java PathFinder, which available at https:

//github.com/javapathfinder/jpf-core.
For this competition we used the version with the timestamp Mon Nov 19

09:51:16 CET 2018, which refers to the date when we pulled the artifacts from
the GitHub repository and generated the jpf-symbc jar archive.

To run SPF, the user needs to download Symbolic PathFinder and Java
PathFinder (default branches) and create a file .jpf/site.properties in the
home directory. The site.properties file should contain the following lines
(the users should modify to point to the location of jpf-core and jpf-symbc

on their computer):

jpf-core = ${user.home}/workspace/jpf-core

jpf-symbc = ${user.home}/workspace/jpf-symbc

extensions=${jpf-core},${jpf-symbc}

The user then creates a *.jpf configuration file (described in detail below).
For the competition we modified the SPF tool to handle the non-deterministic
constructs required by the competition.

4.1 Example Configuration

We give here an example configuration that can be used to run the SPF tool; this
is the default configuration, that we used in the competition. The explanation
for the different options is given in paranthesis.

– target=test.Main (specify the target application)
– classpath=/.. (path to your class example)
– sourcepath=/.. (path to the source of your example)

– symbolic.dp=z3bitvector (specify the decision procedure)
– symbolic.bvlength=64 (specify the bitvector length)

– symbolic.min_int=-100 (specify various min max values)
– symbolic.max_int=100

– symbolic.min_double=-100.0

– symbolic.max_double=100.0

– symbolic.debug=true (print debug information)

https://github.com/SymbolicPathFinder/jpf-symbc
https://github.com/SymbolicPathFinder/jpf-symbc
https://github.com/javapathfinder/jpf-core
https://github.com/javapathfinder/jpf-core


– search.depth_limit=15 (specify search limit)

– symbolic.lazy=on (handling symbolic arrays)
– symbolic.arrays=true

– symbolic.strings=true (specify string analysis)
– symbolic.string_dp=ABC (specify string solver)

SPF also has the option of running the constraint solving incrementally.
Note however that we did not use the string solving and the incremental solving
options in the competition as we did not have enough time to prepare and test
those features, as we were entered late in the competition.

5 Software Project and Contributors

Information about the project and contributors can be found at the project web-
page: https://github.com/SymbolicPathFinder/jpf-symbc. For more infor-
mation please contact the authors of this paper.

References

1. L. Bang, A. Aydin, Q. Phan, C. S. Pasareanu, and T. Bultan. String analysis for
side channels with segmented oracles. In FSE 2016, Seattle, WA, USA, November
13-18, 2016, pages 193–204, 2016.

2. A. Filieri, C. S. Pasareanu, and W. Visser. Reliability analysis in Symbolic
PathFinder. In ICSE ’13, San Francisco, CA, USA, May 18-26, 2013, pages 622–
631, 2013.

3. A. Fromherz, K. S. Luckow, and C. S. Pasareanu. Symbolic arrays in Symbolic
PathFinder. ACM SIGSOFT Software Engineering Notes, 41(6):1–5, 2016.

4. J. Geldenhuys, M. B. Dwyer, and W. Visser. Probabilistic symbolic execution. In
ISSTA 2012, Minneapolis, MN, USA, July 15-20, 2012, pages 166–176, 2012.

5. S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized symbolic execution
for model checking and testing. In TACAS 2003, Held as Part of ETAPS 2003,
Warsaw, Poland, April 7-11, 2003, Proceedings, pages 553–568, 2003.

6. X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser. JFIX: Semantics-based
repair of java programs via symbolic pathfinder. In ISSTA 2017, pages 376–379,
2017.

7. X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser. S3: Syntax- and
semantic-guided repair synthesis via programming by examples. In ESEC/FSE
2017, pages 593–604, New York, NY, USA, 2017. ACM.

8. Y. Noller, R. Kersten, and C. S. Pasareanu. Badger: complexity analysis with
fuzzing and symbolic execution. In ISSTA 2018, Amsterdam, The Netherlands,
July 16-21, 2018, pages 322–332, 2018.

9. C. S. Pasareanu, N. Rungta, and W. Visser. Symbolic execution with mixed
concrete-symbolic solving. In ISSTA 2011, Toronto, ON, Canada, July 17-21,
2011, pages 34–44, 2011.

10. C. S. Pasareanu, W. Visser, D. H. Bushnell, J. Geldenhuys, P. C. Mehlitz, and
N. Rungta. Symbolic PathFinder: integrating symbolic execution with model
checking for java bytecode analysis. Autom. Softw. Eng., 20(3):391–425, 2013.

https://github.com/SymbolicPathFinder/jpf-symbc

	Symbolic Pathfinder for SV-COMP

