
Development of a JUnit Extension for Automated Program Repair
JUnit meets APR

Automated
Program
Repair

+

Prof. Dr. Yannic Noller
Software Quality group

im Menü über:
Start > Absatz >

Listenebene

Motivation and Background
§ Automated program repair (APR)[1] promises great help for software developers by

automatically generating patches. Various techniques for APR (search-based, semantic-
based, template-based, ML-based) have been proposed in the research community, but only
a few have made their way to the application in practice.

§ This project aims to provide a concrete solution that integrates with existing workflows like
JUnit[2]. JUnit is the standard unit testing framework for Java. Failing test cases usually
indicate a regression error, meaning that an error was introduced with recent changes.

§ An automated repair solution for JUnit would follow up on the failing test case event and
automatically propose a patch for the developer. Therefore, it attempts to merge testing and
repair, which is an essential step to improve software quality at scale.

[1] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated program repair. Commun. ACM 62, 12
(December 2019), 56–65. https://doi.org/10.1145/3318162

[2] https://junit.org/junit5/

Studyproject: JUnit meets APR2

https://doi.org/10.1145/3318162
https://junit.org/junit5/

im Menü über:
Start > Absatz >

Listenebene

Student Task and Responsibilities
§ Realize an IntelliJ extension that allows the developer to run tests with JUnit followed by the

automated repair of the failing tests by adapting the corresponding Java code. This represents
the complete workflow from bug detection, fault localization, fix generation, and patch application.

§ A previous study project already provided the initial implementation of such extension. This new
study project is supposed to build on top of it and add new features.

§ The students are supposed to explore existing LLM-based APR techniques and should also
implement their own variant/new technique. A starting point can be works like ChatRepair[3] and
AutoCodeRover[4].

§ The implementation(s) must be evaluated on open-source projects, which can be selected by the
students. The findings of the conducted experiments must be thoroughly documented.

[3] C. S. Xia and L. Zhang, „Automated Program Repair via Conversation: Fixing 162 out of 337 Bugs for $0.42 Each using ChatGPT“,
ISSTA 2024. https://doi.org/10.1145/3650212.3680323

[4] Y. Zhang, H. Ruan, Z. Fan, and A. Roychoudhury, „AutoCodeRover: Autonomous Program Improvement“, ISSTA 2024.
https://doi.org/10.1145/3650212.3680384

Studyproject: JUnit meets APR3

https://doi.org/10.1145/3650212.3680323
https://doi.org/10.1145/3650212.3680384

im Menü über:
Start > Absatz >

Listenebene

Minimum Expectation and Extensions
§ The minimum expected result is the implementation of an IDE extension that supports the

described functionality generating and integrating a patch for a failing JUnit test case.
§ The group must implement at least one additional (not yet integrated) APR approach and

integrate the functionality to combine patches from two APR components. Further, the group
should integrate/implement at least one LLM-based APR component. The set of desired
features will be discussed during the first project phase.

§ An important aspect of this project is the design of the implementation, the maintainability,
and the extensibility. Further, the implementation should be properly tested.

§ The group must show the operationability of their implementation with a live demonstration.
§ Potential extension points:

§ Explore more interactive features to present the generated fault locations or patches,
which will help the developer to understand and fix the problem.

§ Explore options to repair syntax errors, i.e., non-compiling code.

Studyproject: JUnit meets APR4

Einfärbung einer Spalte/Zeile:

Entwurf / Tabellentools >

Die gewünschte Farbe aus den

Initial Timeplan

Studyproject: JUnit meets APR5

Week 1 (13.10. – 19.10.)M1 Kick-Off & Introduction

Week 2 (20.10. – 26.10.)
Planning, Requirements
Engineering, and Design

Week 3 (27.10. – 02.11.)M2

Week 4 (03.11. – 09.11.)
1st Coding Cycle
Implementation of
prototype (no complete
workflow implementation
expected)

Week 5 (10.11. – 16.11.)

Week 6 (17.11. – 23.11.)

Week 7 (24.11. – 30.11.)M3

Week 8 (01.12. – 07.12.)
2nd Coding Cycle
Implementation of
complete workflow

Week 9 (08.12. – 14.12.)

Week 10 (15.12. – 21.12.)M4

3rd Coding Cycle
Improvements and
extensionsWeek 13 (05.01. – 11.01.)

Week 14 (12.01. – 18.01.)

Week 15 (19.01. – 25.01.) M5 Finalization code (code
freeze after week 15)

Week 16 (26.01. – 01.02.) Final documentation and
report writing/submission

Week 17 (02.02. – 08.02.)M6

Milestones:
• M1: Project Kick-Off
• M2: Code Design Submission
• M3: Demonstration of Prototype

• M4: Demonstration of Complete Workflow
• M5: Final Code Submission
• M6: Final Report Submission

im Menü über:
Start > Absatz >

Listenebene

Working Mode
§ Weekly meetings with advisor (will be arranged taking into account all schedules)
§ Expected are at least one additional weekly group-internal meeting and active discussions on

Slack/Discord
§ Kick-Off Meeting: in the week of 13th October 2025 (details will be announced)

Studyproject: JUnit meets APR6

im Menü über:
Start > Absatz >

Listenebene

Other Information
§ Prerequisites: Programming experience, preferably in Java, is needed for this project.

Further, having experience with JUnit Testing and IDE plugin development would be
beneficial. Prior knowledge of automated program repair is not needed. Prior attendance of
the Software Engineering course is highly recommended.

§ Deliverables: Source code, its documentation, and a publishable report (incl. the evaluation
results), ideally to submit to a conference (e.g., as a Demo paper) or at least publish as a
technical report on arxiv.org.

§ Number of Participants: 2-4
§ Target Group: Bachelor and Master students
§ Industrial partner: None (done at RUB)

Studyproject: JUnit meets APR7

im Menü über:
Start > Absatz >

Listenebene

Contact

Prof. Dr. Yannic Noller

§ Raum: MC 4.114
§ E-Mail: yannic.noller@rub.de
§ Office hours: By Arrangement

§ https://informatik.rub.de/ac-personen/yannic-noller/
§ https://yannicnoller.github.io

Studyproject: JUnit meets APR8

https://informatik.rub.de/ac-personen/yannic-noller/
https://informatik.rub.de/ac-personen/yannic-noller/
https://informatik.rub.de/ac-personen/yannic-noller/
https://informatik.rub.de/ac-personen/yannic-noller/
https://informatik.rub.de/ac-personen/yannic-noller/
https://informatik.rub.de/ac-personen/yannic-noller/
https://yannicnoller.github.io/
https://yannicnoller.github.io/

