
Concolic Program Repair
Yannic Noller | Research Talk

yannic.noller@nus.edu.sg 1Concolic Program Repair

(Automated) Program Repair

yannic.noller@nus.edu.sg 2Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

ProgramInput Output
unexpected behavior
à bug detected❌(Buggy)

How to
resolve?

Fault / Fix
Localization

Validation Program
Modification

✅

can be very tedious
… and time consuming

à Automated program repair

⚡

State of the Art

yannic.noller@nus.edu.sg 3Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

Challenges
How to provide high quality but

few patches?

How to avoid non-sensical
patches?

How to produce less overfitting
patches?

How to repair bugs in the
absence of many test cases?

Other low-quality patches:

Challenges

yannic.noller@nus.edu.sg 4Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

Programin out

Input Expected
Output Check

in=10 out=4

if (in == 10) {
return 4;

}
…

❌ ✅

in=100 out=25 ❌

test cases are only
partial specifications

.. but overfitting
to test case

if (((! (image->res_unit == 3)) && (! (image->res_unit == 3))))

if ((! ((log_level && (! ((- 4) == 0))) && log_level)))

yannic.noller@nus.edu.sg 5Concolic Program Repair

International Conference on
Programming Language

Design and Implementation

20-26 June 2021

Concolic Program Repair
Ridwan Shari�deen∗

National University of Singapore
Singapore

ridwan@comp.nus.edu.sg

Yannic Noller∗
National University of Singapore

Singapore
yannic.noller@acm.org

Lars Grunske
Humboldt-Universität zu Berlin

Germany
grunske@informatik.hu-berlin.de

Abhik Roychoudhury
National University of Singapore

Singapore
abhik@comp.nus.edu.sg

Abstract
Automated program repair reduces the manual e�ort in �x-
ing program errors. However, existing repair techniques
modify a buggy program such that it passes given tests.
Such repair techniques do not discriminate between correct
patches and patches that over�t the available tests (breaking
untested but desired functionality).We propose an integrated
approach for detecting and discarding over�tting patches via
systematic co-exploration of the patch space and input space.
We leverage concolic path exploration to systematically tra-
verse the input space (and generate inputs), while ruling out
signi�cant parts of the patch space. Given a long enough
time budget, this approach allows a signi�cant reduction in
the pool of patch candidates, as shown by our experiments.
We implemented our technique in the form of a tool called
‘CPR’ and evaluated its e�cacy in reducing the patch space
by discarding over�tting patches from a pool of plausible
patches. We evaluated our approach for �xing real-world
software vulnerabilities and defects, for �xing functionality
errors in programs drawn from SV-COMP benchmarks used
in software veri�cation, as well as for test-suite guided repair.
In our experiments, we observed a patch space reduction due
to our concolic exploration of up to 74% for �xing software
vulnerabilities and up to 63% for SV-COMP programs. Our
technique presents the viewpoint of gradual correctness —
repair run over longer time leads to less over�tting �xes.

CCS Concepts: • Software and its engineering ! Soft-
ware testing and debugging.

∗Joint �rst authors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI ’21, June 20–25, 2021, Virtual, Canada
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8391-2/21/06. . . $15.00
h�ps://doi.org/10.1145/3453483.3454051

Keywords: program repair, symbolic execution, program
synthesis, patch over�tting

ACM Reference Format:
Ridwan Shari�deen, Yannic Noller, Lars Grunske, and Abhik Roy-
choudhury. 2021. Concolic Program Repair. In Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Lan-
guage Design and Implementation (PLDI ’21), June 20–25, 2021, Vir-
tual, Canada. ACM, New York, NY, USA, 16 pages. h�ps://doi.org/
10.1145/3453483.3454051

1 Introduction
Automated Program Repair [14, 24] is an emerging tech-
nology which seeks to rectify errors or vulnerabilities in
software automatically. There are various applications of
automated repair, including improving programmer produc-
tivity, reducing exposure to software security vulnerabilities,
producing self-healing software systems, and even enabling
intelligent tutoring systems for teaching programming.

Since program repair needs to be guided by certain notions
of correctness and formal speci�cations of the program’s
behavior are usually not available, it is common to use test-
suites to guide repair. The goal of automated repair is then
to produce a (minimal) modi�cation of the program so as to
pass the tests in the given test-suite. While test-suite driven
repair provides a practical formulation of the program repair
problem, it gives rise to the phenomenon of “over�tting” [26,
30]. The patched program may pass the tests in the given
test-suite while failing tests outside the test-suite, thereby
over�tting the test data. Such over�tting patches are called
plausible patches because they repair the failing test case(s),
but they are not guaranteed to be correct, since they may
fail tests outside the test-suite guiding the repair. Various
solutions to alleviate the patch over�tting issue have been
studied to date, including symbolic speci�cation inference
[23, 25], machine learning-based prioritization of patches
[2, 20, 21] and fuzzing based test-suite augmentation [7].
These works do not guarantee any notion of correctness
of the patches, and cannot guarantee even the most basic
correctness criteria such as crash freedom.

In this work, we re�ect on the problem of patch over�tting
[22, 26, 30], in our attempt to produce patches which work

Research Problem State of the Art Our Solution Example Evaluation Summary

Our Approach

yannic.noller@nus.edu.sg 6Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

plausible
patches

P2
P3

P4

Input Space Patch Space
initial test case refined patch set

explored path
(input partition)

correct
patch (set)

semantic approach incl. program synthesis
avoids non-compilable patches
provides symbolic reasoning cababilities

co-exploration of the input space and patch space
prune overfitting patches
enables gradual improvement

user-provided specification
to reason about additional inputs
key aspect to handle absence of test cases

P1

Concolic
Program Repair

infeasbility checks
in both directions

represented with
abstract patches

Fresh look on
program repair

Inputs to Concolic Program Repair

yannic.noller@nus.edu.sg 7Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

(assert (= false (= observation 0)))

Input

Failing test
case(s)

Fix
Locations

Buggy
Program

User
Specification

........
static int
cvtRaster(TIFF* tif, uint32* raster, uint32 width, uint32 height)
{

uint32 y;
tstrip_t strip = 0;
tsize_t cc, acc;
unsigned char* buf;
uint32 rwidth = roundup(width, horizSubSampling);
uint32 rheight = roundup(height, vertSubSampling);
uint32 nrows = (rowsperstrip > rheight ?

rheight : rowsperstrip);
uint32 rnrows = roundup(nrows,vertSubSampling);
if (CONDITION) return 0;
/* potential divide-by-zero error */
cc = rnrows*rwidth + 2 * ((rnrows*rwidth)

/ (horizSubSampling*vertSubSampling));
........

}

CVE-2016-3623:
Divide by Zero in LibTIFF v4.0.6

🏞
e.g., exploit as

TIFF picture

source location, (fix template),
synthesis components

formula about correct behavior
in SMT format

observation

Workflow

yannic.noller@nus.edu.sg 8Concolic Program Repair

Input OutputConcolic Program Repair

Patch Pool
Construction

Patch
Reduction

Input
Generation

Failing test
case(s)

Fix
Locations

Buggy
Program

User
Specification

Ranked
Patches

Research Problem State of the Art Our Solution Example Evaluation Summary

program
synthesis

refinement based
on explored paths
and specification

anytime algorithm
(gradual improvement)

path
constraint ɸ

Concolic
Execution

reduced
patch pool

new input

path
exploration

independent from
any test suite

Patch Representation

yannic.noller@nus.edu.sg 9Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

.. concrete patches .. abstract patches

Our notion of an abstract patch represents a patch template with parameters.
generate and maintain smaller amount of patch candidates
allows refinement instead of just discarding
subsumes concrete patches

x > 0
x > 1
x > 2
…

x + 1 > y
x - 1 > y
x + 2 > y
…

x > a, a ∈ [0, 10]

x + a > y, a ∈ [-10, 10]

integer and boolean
expressions

Abstract Patches

yannic.noller@nus.edu.sg 10Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

§ 𝜃!(𝑋!, 𝐴) denotes the repaired (boolean or integer) expression

§ 𝑇!(𝐴) represents the conjunction of constraints 𝜏!(𝑎") on the
parameters 𝑎" ∈ 𝐴 included in 𝜃!: 𝑇! 𝐴 = ⋀#!∈% 𝜏!(𝑎")

§ 𝜓!(𝑋, 𝐴) is the patch formula induced by inserting the
expression 𝜃! into the buggy program

𝑿𝝆 is the set of program variables
𝑿 ⊆ 𝑋" is the set of input variables
𝑨 is the set of template parameters

(𝜽𝝆, 𝑻𝝆, 𝝍𝝆)

if (𝜌)
return 0;

Inputs to Concolic Program Repair

yannic.noller@nus.edu.sg 7Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

(assert (= false (= observation 0)))

Input

Failing test
case(s)

Fix
Locations

Buggy
Program

User
Specification

........
static int
cvtRaster(TIFF* tif, uint32* raster, uint32 width, uint32 height)
{

uint32 y;
tstrip_t strip = 0;
tsize_t cc, acc;
unsigned char* buf;
uint32 rwidth = roundup(width, horizSubSampling);
uint32 rheight = roundup(height, vertSubSampling);
uint32 nrows = (rowsperstrip > rheight ?

rheight : rowsperstrip);
uint32 rnrows = roundup(nrows,vertSubSampling);
if (CONDITION) return 0;
/* potential divide-by-zero error */
cc = rnrows*rwidth + 2 * ((rnrows*rwidth)

/ (horizSubSampling*vertSubSampling));
........

}

CVE-2016-3623:
Divide by Zero in LibTIFF v4.0.6

!
e.g., exploit as

TIFF picture

source location, (fix template),
synthesis components

formula about correct behavior
in SMT format

observation
𝜃" ≔ 𝑥 > 𝑎

𝑇" = 𝜏" 𝑎 ≔ (𝑎 ≥ −10)
𝜓" ≔ 𝑥 > 𝑎

…
y = 𝜌;
…

1. patch is a condition

2. patch is a right hand-side of an assignment

𝜃" ≔ 𝑥 − 𝑎
𝑇" = 𝜏" 𝑎 ≔ (𝑎 ≥ −10)

𝜓" ≔ (𝑦 = 𝑥 − 𝑎)

Examples

Infeasability checks

yannic.noller@nus.edu.sg 11Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

.. in the input space .. in the patch space
Patch Reduction:

If a patch allows inputs to exercise a path
that violates the specification, we identify
this as a patch that overfits the valid set

of values and attempt to refine it.

∀𝑎!, 𝑎" , . . , 𝑎# ∀𝑥! , 𝑥" , . . , 𝑥$:
𝜙(𝑋) ∧ 𝜓% 𝑋, 𝐴 ∧ 𝑇% 𝐴 ⟹ 𝜎(𝑋)

parameters inputs

specificationparameter
constraint

patch
constraint

path
constraint

Path Reduction:
For every generated input, we check that
there is one patch that can exercise the
corresponding path. Otherwise, the path

will not be explored.

𝜙 ∶= 𝑥 > 3 ∧ 𝑦 > 5 ∧ 𝜌
𝜌 ∶= (𝑥 = 0 ∨ 𝑦 = 0)

For example:

Patch Refinement

yannic.noller@nus.edu.sg 12Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

∀𝑎!, 𝑎" , . . , 𝑎# ∀𝑥! , 𝑥" , . . , 𝑥$: 𝜙(𝑋) ∧ 𝜓% 𝑋, 𝐴 ∧ 𝑇% 𝐴 ⟹ 𝜎(𝑋)

¬(∀𝑎!, 𝑎" , . . , 𝑎# ∀𝑥! , 𝑥" , . . , 𝑥$: 𝜙 𝑋 ∧ 𝜓% 𝑋, 𝐴 ∧ 𝑇% 𝐴 ⟹ 𝜎 𝑋)

What we want to have:

What we are checking for:

≡ ¬(∀𝑎!, 𝑎" , . . , 𝑎# ∀𝑥! , 𝑥" , . . , 𝑥$: ¬(𝜙 𝑋 ∧ 𝜓% 𝑋, 𝐴 ∧ 𝑇% 𝐴) ∨ 𝜎 𝑋)

≡ ∃𝑎!, 𝑎" , . . , 𝑎# ∃𝑥! , 𝑥" , . . , 𝑥$: 𝜙 𝑋 ∧ 𝜓% 𝑋, 𝐴 ∧ 𝑇% 𝐴 ∧ ¬𝜎 𝑋

à use SMT solver to retrieve a model ℳ to refine the parameter constraint

Example

yannic.noller@nus.edu.sg 13Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

........
static int
cvtRaster(TIFF* tif, uint32* raster, uint32 width, uint32 height)
{

uint32 y;
tstrip_t strip = 0;
tsize_t cc, acc;
unsigned char* buf;
uint32 rwidth = roundup(width, horizSubSampling);
uint32 rheight = roundup(height, vertSubSampling);
uint32 nrows = (rowsperstrip > rheight ?

rheight : rowsperstrip);
uint32 rnrows = roundup(nrows,vertSubSampling);
if (CONDITION) return 0;
/* potential divide-by-zero error */
cc = rnrows*rwidth + 2 * ((rnrows*rwidth)

/ (horizSubSampling*vertSubSampling));
........

}

CVE-2016-3623: Divide by Zero in LibTIFF v4.0.6
x ≙ horizSubSampling
y ≙ vertSubSampling

Example (2)

yannic.noller@nus.edu.sg 14Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

plausible
patches

P2
P3

P4

Input Space Patch Space

correct
patch (set)

P1

ID Patch Template Parameter Constraint # Conc.
Patches

1 x >= a a ≥ -10 ∧ a ≤ 7 18
2 y < b b ≥ 1 ∧ b ≤ 10 10
3 x == a || y == b (a=7 ∧ b ≥ -10 ∧ b ≤ 10) ∨

(b=0 ∧ a ≥ -10 ∧ a ≤ 10)
41

Patch Details

69
Initial test input

x=7, y=0

Inputs to Concolic Program Repair

yannic.noller@nus.edu.sg 7Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

(assert (= false (= observation 0)))

Input

Failing test
case(s)

Fix
Locations

Buggy
Program

User
Specification

........
static int
cvtRaster(TIFF* tif, uint32* raster, uint32 width, uint32 height)
{

uint32 y;
tstrip_t strip = 0;
tsize_t cc, acc;
unsigned char* buf;
uint32 rwidth = roundup(width, horizSubSampling);
uint32 rheight = roundup(height, vertSubSampling);
uint32 nrows = (rowsperstrip > rheight ?

rheight : rowsperstrip);
uint32 rnrows = roundup(nrows,vertSubSampling);
if (CONDITION) return 0;
/* potential divide-by-zero error */
cc = rnrows*rwidth + 2 * ((rnrows*rwidth)

/ (horizSubSampling*vertSubSampling));
........

}

CVE-2016-3623:
Divide by Zero in LibTIFF v4.0.6

!
e.g., exploit as

TIFF picture

source location, (fix template),
synthesis components

formula about correct behavior
in SMT format

observation

P2
P3

P4

P1: x > 3 ∧ y ≤ 5 ∧ ¬C

P1

x ≙ horizSubSampling
y ≙ vertSubSampling
C ≙ CONDITION

Ⅰ

Ⅱ

Example (2) - Patch 1

yannic.noller@nus.edu.sg 15Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

plausible
patches

P2
P3

P4

Input Space Patch Space

correct
patch (set)

P1

ID Patch Template Parameter Constraint # Conc.
Patches

1 x >= a a ≥ -10 ∧ a ≤ 7 18
2 y < b b ≥ 1 ∧ b ≤ 10 10
3 x == a || y == b (a=7 ∧ b ≥ -10 ∧ b ≤ 10) ∨

(b=0 ∧ a ≥ -10 ∧ a ≤ 10)
41

Patch Details

69
Initial test input

x=7, y=0

Inputs to Concolic Program Repair

yannic.noller@nus.edu.sg 7Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

(assert (= false (= observation 0)))

Input

Failing test
case(s)

Fix
Locations

Buggy
Program

User
Specification

........
static int
cvtRaster(TIFF* tif, uint32* raster, uint32 width, uint32 height)
{

uint32 y;
tstrip_t strip = 0;
tsize_t cc, acc;
unsigned char* buf;
uint32 rwidth = roundup(width, horizSubSampling);
uint32 rheight = roundup(height, vertSubSampling);
uint32 nrows = (rowsperstrip > rheight ?

rheight : rowsperstrip);
uint32 rnrows = roundup(nrows,vertSubSampling);
if (CONDITION) return 0;
/* potential divide-by-zero error */
cc = rnrows*rwidth + 2 * ((rnrows*rwidth)

/ (horizSubSampling*vertSubSampling));
........

}

CVE-2016-3623:
Divide by Zero in LibTIFF v4.0.6

!
e.g., exploit as

TIFF picture

source location, (fix template),
synthesis components

formula about correct behavior
in SMT format

observation

P2
P3

P4

ID Patch Template Parameter Constraint # Conc.
Patches

1 x >= a a ≥ -10 ∧ a ≤ 4 15

P1: x > 3 ∧ y ≤ 5 ∧ ¬C

P1

x ≙ horizSubSampling
y ≙ vertSubSampling
C ≙ CONDITION

Ⅰ

Ⅱ

∃𝑎!, 𝑎" , . . , 𝑎# ∃𝑥! , 𝑥" , . . , 𝑥$:

𝑥 > 3 ∧ 𝑦 ≤ 5 path constraint P1

(assert (= false (= observation 0)))
𝜙 𝑋 ∧ 𝜓% 𝑋, 𝐴 ∧ 𝑇% 𝐴 ∧ ¬𝜎 𝑋

∧ ¬ 𝑥 ≥ 𝑎 ∧ 𝑎 ∈ −10, 7
∧ (𝑥 ∗ 𝑦 = 0)

patch 1

condition specification
violation

Example (2) - Patch 2

yannic.noller@nus.edu.sg 16Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

plausible
patches

P2
P3

P4

Input Space Patch Space

correct
patch (set)

P1

ID Patch Template Parameter Constraint # Conc.
Patches

1 x >= a a ≥ -10 ∧ a ≤ 7 18
2 y < b b ≥ 1 ∧ b ≤ 10 10
3 x == a || y == b (a=7 ∧ b ≥ -10 ∧ b ≤ 10) ∨

(b=0 ∧ a ≥ -10 ∧ a ≤ 10)
41

Patch Details

69
Initial test input

x=7, y=0

Inputs to Concolic Program Repair

yannic.noller@nus.edu.sg 7Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

(assert (= false (= observation 0)))

Input

Failing test
case(s)

Fix
Locations

Buggy
Program

User
Specification

........
static int
cvtRaster(TIFF* tif, uint32* raster, uint32 width, uint32 height)
{

uint32 y;
tstrip_t strip = 0;
tsize_t cc, acc;
unsigned char* buf;
uint32 rwidth = roundup(width, horizSubSampling);
uint32 rheight = roundup(height, vertSubSampling);
uint32 nrows = (rowsperstrip > rheight ?

rheight : rowsperstrip);
uint32 rnrows = roundup(nrows,vertSubSampling);
if (CONDITION) return 0;
/* potential divide-by-zero error */
cc = rnrows*rwidth + 2 * ((rnrows*rwidth)

/ (horizSubSampling*vertSubSampling));
........

}

CVE-2016-3623:
Divide by Zero in LibTIFF v4.0.6

!
e.g., exploit as

TIFF picture

source location, (fix template),
synthesis components

formula about correct behavior
in SMT format

observation

P2
P3

P4

ID Patch Template Parameter Constraint # Conc.
Patches

1 x >= a a ≥ -10 ∧ a ≤ 4 15
2 y < b b ≥ 1 ∧ b ≤ 10 10

P1: x > 3 ∧ y ≤ 5 ∧ ¬C

P1

x ≙ horizSubSampling
y ≙ vertSubSampling
C ≙ CONDITION

Ⅰ

Ⅱ

∃𝑎!, 𝑎" , . . , 𝑎# ∃𝑥! , 𝑥" , . . , 𝑥$:

𝑥 > 3 ∧ 𝑦 ≤ 5 path constraint P1

𝜙 𝑋 ∧ 𝜓% 𝑋, 𝐴 ∧ 𝑇% 𝐴 ∧ ¬𝜎 𝑋

∧ ¬ 𝑦 < 𝑏 ∧ 𝑏 ∈ 1, 10
∧ (𝑥 ∗ 𝑦 = 0)

patch 2

condition specification
violation

ID Patch Template Parameter Constraint # Conc.
Patches

1 x >= a a ≥ -10 ∧ a ≤ 4 15

Example (2) - Patch 3

yannic.noller@nus.edu.sg 17Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

plausible
patches

P2
P3

P4

Input Space Patch Space

correct
patch (set)

P1

ID Patch Template Parameter Constraint # Conc.
Patches

1 x >= a a ≥ -10 ∧ a ≤ 7 18
2 y < b b ≥ 1 ∧ b ≤ 10 10
3 x == a || y == b (a=7 ∧ b ≥ -10 ∧ b ≤ 10) ∨

(b=0 ∧ a ≥ -10 ∧ a ≤ 10)
41

Patch Details

69
Initial test input

x=7, y=0

Inputs to Concolic Program Repair

yannic.noller@nus.edu.sg 7Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

(assert (= false (= observation 0)))

Input

Failing test
case(s)

Fix
Locations

Buggy
Program

User
Specification

........
static int
cvtRaster(TIFF* tif, uint32* raster, uint32 width, uint32 height)
{

uint32 y;
tstrip_t strip = 0;
tsize_t cc, acc;
unsigned char* buf;
uint32 rwidth = roundup(width, horizSubSampling);
uint32 rheight = roundup(height, vertSubSampling);
uint32 nrows = (rowsperstrip > rheight ?

rheight : rowsperstrip);
uint32 rnrows = roundup(nrows,vertSubSampling);
if (CONDITION) return 0;
/* potential divide-by-zero error */
cc = rnrows*rwidth + 2 * ((rnrows*rwidth)

/ (horizSubSampling*vertSubSampling));
........

}

CVE-2016-3623:
Divide by Zero in LibTIFF v4.0.6

!
e.g., exploit as

TIFF picture

source location, (fix template),
synthesis components

formula about correct behavior
in SMT format

observation

P2
P3

P4

ID Patch Template Parameter Constraint # Conc.
Patches

1 x >= a a ≥ -10 ∧ a ≤ 4 15
2 y < b b ≥ 1 ∧ b ≤ 10 10
3 x == a || y == b b=0 ∧ a ≥ -10 ∧ a ≤ 10 21

P1: x > 3 ∧ y ≤ 5 ∧ ¬C

P1

x ≙ horizSubSampling
y ≙ vertSubSampling
C ≙ CONDITION

Ⅰ

Ⅱ

plausible
patches

P2
P3

P4

Input Space Patch Space

correct
patch (set)

P1

69
Initial test input

x=7, y=0

Ⅰ

∃𝑎!, 𝑎" , . . , 𝑎# ∃𝑥! , 𝑥" , . . , 𝑥$:

𝑥 > 3 ∧ 𝑦 ≤ 5 path constraint P1

𝜙 𝑋 ∧ 𝜓% 𝑋, 𝐴 ∧ 𝑇% 𝐴 ∧ ¬𝜎 𝑋

∧ ¬ 𝑥 = 𝑎 ∨ 𝑦 = 𝑏
∧ (𝑎 = 7 ∧ 𝑏 ∈ −10, 10
∨ 𝑏 = 0 ∧ 𝑎 ∈ −10, 10)

∧ (𝑥 ∗ 𝑦 = 0)

patch 3

condition specification
violation ID Patch Template Parameter Constraint # Conc.

Patches
1 x >= a a ≥ -10 ∧ a ≤ 4 15
2 y < b b ≥ 1 ∧ b ≤ 10 10

Example (2)

yannic.noller@nus.edu.sg 18Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

plausible
patches

P2
P3

P4

Input Space Patch Space

correct
patch (set)

P1

ID Patch Template Parameter Constraint # Conc.
Patches

1 x >= a a ≥ -10 ∧ a ≤ 7 18
2 y < b b ≥ 1 ∧ b ≤ 10 10
3 x == a || y == b (a=7 ∧ b ≥ -10 ∧ b ≤ 10) ∨

(b=0 ∧ a ≥ -10 ∧ a ≤ 10)
41

Patch Details

69
Initial test input

x=7, y=0

Inputs to Concolic Program Repair

yannic.noller@nus.edu.sg 7Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

(assert (= false (= observation 0)))

Input

Failing test
case(s)

Fix
Locations

Buggy
Program

User
Specification

........
static int
cvtRaster(TIFF* tif, uint32* raster, uint32 width, uint32 height)
{

uint32 y;
tstrip_t strip = 0;
tsize_t cc, acc;
unsigned char* buf;
uint32 rwidth = roundup(width, horizSubSampling);
uint32 rheight = roundup(height, vertSubSampling);
uint32 nrows = (rowsperstrip > rheight ?

rheight : rowsperstrip);
uint32 rnrows = roundup(nrows,vertSubSampling);
if (CONDITION) return 0;
/* potential divide-by-zero error */
cc = rnrows*rwidth + 2 * ((rnrows*rwidth)

/ (horizSubSampling*vertSubSampling));
........

}

CVE-2016-3623:
Divide by Zero in LibTIFF v4.0.6

!
e.g., exploit as

TIFF picture

source location, (fix template),
synthesis components

formula about correct behavior
in SMT format

observation

P2
P3

P4

ID Patch Template Parameter Constraint # Conc.
Patches

1 x >= a a ≥ -10 ∧ a ≤ 4 15
2 y < b b ≥ 1 ∧ b ≤ 10 10
3 x == a || y == b b=0 ∧ a ≥ -10 ∧ a ≤ 10 21

P1: x > 3 ∧ y ≤ 5 ∧ ¬C

P1

x ≙ horizSubSampling
y ≙ vertSubSampling
C ≙ CONDITION

Ⅰ

Ⅱ

46

plausible
patches

P2
P3

P4

Input Space Patch Space

correct
patch (set)

P1

69
Initial test input

x=7, y=0

Ⅰ

Example (3)

yannic.noller@nus.edu.sg 19Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

Inputs to Concolic Program Repair

yannic.noller@nus.edu.sg 7Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

(assert (= false (= observation 0)))

Input

Failing test
case(s)

Fix
Locations

Buggy
Program

User
Specification

........
static int
cvtRaster(TIFF* tif, uint32* raster, uint32 width, uint32 height)
{

uint32 y;
tstrip_t strip = 0;
tsize_t cc, acc;
unsigned char* buf;
uint32 rwidth = roundup(width, horizSubSampling);
uint32 rheight = roundup(height, vertSubSampling);
uint32 nrows = (rowsperstrip > rheight ?

rheight : rowsperstrip);
uint32 rnrows = roundup(nrows,vertSubSampling);
if (CONDITION) return 0;
/* potential divide-by-zero error */
cc = rnrows*rwidth + 2 * ((rnrows*rwidth)

/ (horizSubSampling*vertSubSampling));
........

}

CVE-2016-3623:
Divide by Zero in LibTIFF v4.0.6

!
e.g., exploit as

TIFF picture

source location, (fix template),
synthesis components

formula about correct behavior
in SMT format

observation

x ≙ horizSubSampling
y ≙ vertSubSampling
C ≙ CONDITION

Ⅱ

Ⅲ

P2
P3

P4

ID Patch Template Parameter Constraint # Conc.
Patches

1 x >= a a ≥ -10 ∧ a ≤ 4 15
2 y < b b ≥ 1 ∧ b ≤ 10 10
3 x == a || y == b b=0 ∧ a ≥ -10 ∧ a ≤ 10 21

46

P1: x > 3 ∧ y ≤ 5 ∧ ¬C

P1

P2
P3

P4

ID Patch Template Parameter Constraint # Conc.
Patches

1 x >= a a ≥ -10 ∧ a ≤ 0 11
2 y < b False 0
3 x == a || y == b a = 0 ∧ b = 0 1

12

P2: x ≤ 3 ∧ y > 5 ∧ ¬C

P1

Input Space Patch Space Patch Details

Example (4)

yannic.noller@nus.edu.sg 20Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

Inputs to Concolic Program Repair

yannic.noller@nus.edu.sg 7Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

(assert (= false (= observation 0)))

Input

Failing test
case(s)

Fix
Locations

Buggy
Program

User
Specification

........
static int
cvtRaster(TIFF* tif, uint32* raster, uint32 width, uint32 height)
{

uint32 y;
tstrip_t strip = 0;
tsize_t cc, acc;
unsigned char* buf;
uint32 rwidth = roundup(width, horizSubSampling);
uint32 rheight = roundup(height, vertSubSampling);
uint32 nrows = (rowsperstrip > rheight ?

rheight : rowsperstrip);
uint32 rnrows = roundup(nrows,vertSubSampling);
if (CONDITION) return 0;
/* potential divide-by-zero error */
cc = rnrows*rwidth + 2 * ((rnrows*rwidth)

/ (horizSubSampling*vertSubSampling));
........

}

CVE-2016-3623:
Divide by Zero in LibTIFF v4.0.6

!
e.g., exploit as

TIFF picture

source location, (fix template),
synthesis components

formula about correct behavior
in SMT format

observation

x ≙ horizSubSampling
y ≙ vertSubSampling
C ≙ CONDITION

Ⅲ

Ⅳ

Input Space Patch Space Patch Details

P2
P3

P4

ID Patch Template Parameter Constraint # Conc.
Patches

1 x >= a a ≥ -10 ∧ a ≤ 0 11
2 y < b False 0
3 x == a || y == b a = 0 ∧ b = 0 1

12

P2: x ≤ 3 ∧ y > 5 ∧ ¬C

P1

P2
P3

P4

ID Patch Template Parameter Constraint # Conc.
Patches

1 x >= a False 0
3 x == a || y == b a = 0 ∧ b = 0 1

1

P3: x ≤ 3 ∧ y ≤ 5 ∧ ¬C

P1

Example (5)

yannic.noller@nus.edu.sg 21Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

Inputs to Concolic Program Repair

yannic.noller@nus.edu.sg 7Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

(assert (= false (= observation 0)))

Input

Failing test
case(s)

Fix
Locations

Buggy
Program

User
Specification

........
static int
cvtRaster(TIFF* tif, uint32* raster, uint32 width, uint32 height)
{

uint32 y;
tstrip_t strip = 0;
tsize_t cc, acc;
unsigned char* buf;
uint32 rwidth = roundup(width, horizSubSampling);
uint32 rheight = roundup(height, vertSubSampling);
uint32 nrows = (rowsperstrip > rheight ?

rheight : rowsperstrip);
uint32 rnrows = roundup(nrows,vertSubSampling);
if (CONDITION) return 0;
/* potential divide-by-zero error */
cc = rnrows*rwidth + 2 * ((rnrows*rwidth)

/ (horizSubSampling*vertSubSampling));
........

}

CVE-2016-3623:
Divide by Zero in LibTIFF v4.0.6

!
e.g., exploit as

TIFF picture

source location, (fix template),
synthesis components

formula about correct behavior
in SMT format

observation

x ≙ horizSubSampling
y ≙ vertSubSampling
C ≙ CONDITION

Ⅳ

Ⅴ

Input Space Patch Space Patch Details

P2
P3

P4

ID Patch Template Parameter Constraint # Conc.
Patches

1 x >= a False 0
3 x == a || y == b a = 0 ∧ b = 0 1

1

P3: x ≤ 3 ∧ y ≤ 5 ∧ ¬C

P1

P2
P3

P4

ID Patch Template Parameter Constraint # Conc.
Patches

3 x == a || y == b a = 0 ∧ b = 0 1

P4: x > 3 ∧ y > 5 ∧ C

P1

1

𝜙 ∶= 𝑥 > 3 ∧ 𝑦 > 5 ∧ 𝜌
𝜌 ∶= (𝑥 = 0 ∨ 𝑦 = 0)

yannic.noller@nus.edu.sg 22Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

P1

P2
P3

P4

Input Space Patch Space

P1

P2
P3

P4

P1

P2
P3

P4

P1

P2
P3

P4

Initial test input
x=7, y=0 ID Patch Template Parameter Constraint # Conc. Patches

1 x >= a a ≥ -10 ∧ a ≤ 7 18

2 y < b b ≥ 1 ∧ b ≤ 10 10

3 x == a || y == b (a=7 ∧ b ≥ -10 ∧ b ≤ 10) ∨
(b=0 ∧ a ≥ -10 ∧ a ≤ 10)

41

Patch Details

ID Patch Template Parameter Constraint # Conc. Patches

1 x >= a a ≥ -10 ∧ a ≤ 4 15

2 y < b b ≥ 1 ∧ b ≤ 10 10

3 x == a || y == b b=0 ∧ a ≥ -10 ∧ a ≤ 10 21

ID Patch Template Parameter Constraint # Conc. Patches

1 x >= a a ≥ -10 ∧ a ≤ 0 11

2 y < b False 0

3 x == a || y == b a = 0 ∧ b = 0 1

ID Patch Template Parameter Constraint # Conc. Patches

1 x >= a False 0

3 x == a || y == b a = 0 ∧ b = 0 1

P1: x > 3 ∧ y ≤ 5 ∧ ¬C

P2: x ≤ 3 ∧ y > 5 ∧ ¬C

P3: x ≤ 3 ∧ y ≤ 5 ∧ ¬C

Ⅰ

Ⅱ

Ⅲ

Ⅳ

69

46

12

1

correct patch

plausible
patches

P1

P2
P3

P4
P4: x > 3 ∧ y > 5 ∧ C

Ⅴ

1

ID Patch Template Parameter Constraint # Conc. Patches

3 x == a || y == b a = 0 ∧ b = 0 1

Patch space refinement
based on the exploration of

input space.

Rule out parts of the input
space, which contradicts

with the patch space.

Gradual improvement

Abstract patches vs.
concrete patches

Evaluation

yannic.noller@nus.edu.sg 23Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

Tools/Techniques

● CEGIS
● ExtractFix
● Angelix
● Prophet

Benchmarks

● ExtractFix
● ManyBugs
● SV-COMP

Repair Areas

● Security Vulnerability Repair
● General Test-based Repair
● Fixing Logical Errors

https://cpr-tool.github.io
http://doi.org/10.5281/zenodo.4668317

https://cpr-tool.github.io
http://doi.org/10.5281/zenodo.4668317

Comparison with existing APR

yannic.noller@nus.edu.sg 24Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

static int jpc_dec_parseopts (..) {

- return 0;
+ return opts->maxlyrs;

}

static int jpc_dec_process_siz(..) {

- if (!(dec->cmpts = jas_malloc(dec->numcomps *

sizeof(jpc_dec_cmpt_t)))) {
+ if ((!(dec->cmpts = jas_malloc(dec->numcomps *

sizeof(jpc_dec_cmpt_t)))) || (1)) {

}

Patches generated by existing APR

Non-sensical patches

Overfitting patches

Comparison with existing APR (2)

yannic.noller@nus.edu.sg 25Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

static int jpc_siz_getparms(…) {

+ if (siz->comps[i].hsamp == 0)

return -1;

}

CVE-2016-8691

CPR generates correct Patch

Initial Patch Space: 260

Refined Patch Space: 96

Refinement: 63%

Rank of Correct Patch: 1

Evaluation Insights

yannic.noller@nus.edu.sg 26Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

CPR is more effective than
CEGIS wrt input and patch
space exploration

Up 74% Patch
Space Reduction

PLDI ’21, June 20–25, 2021, Virtual, Canada Ridwan Shari�deen, Yannic Noller, Lars Grunske, and Abhik Roychoudhury

Table 1. Comparison between our CEGIS implementation and CPR with regard to patch pool reduction ratio and input space
reduction ratio. Benchmark: E������F��. The experiments have been executed with timeout of 1 hour.

ID Buggy Program Components Our CEGIS Implementation CPR
Project Bug ID General Custom |%�=8C | |%�8=0; | Ratio q⇢ Correct? |%�=8C | |%�8=0; | Ratio q⇢ q(Rank

1 Libti� CVE-2016-5321 2 3 174 174 0 % 17 7 174 104 40% 67 77 2
2 Libti� CVE-2014-8128 4 3 260 260 0% 0 7 260 260 0% 0 0 1
3 Libti� CVE-2016-3186 4 3 130 130 0% 13 7 130 130 0% 13 1 11
4 Libti� CVE-2016-5314 4 4 199 198 1% 10 7 199 197 1% 21 4 2
5 Libti� CVE-2016-9273 4 3 260 260 0% 5 7 260 141 46% 10 2 8
6 Libti� bugzilla 2633 4 3 130 130 0% 66 7 130 130 0% 109 21 8
7 Libti� CVE-2016-10094 4 3 130 130 0% 23 7 130 77 41% 34 114 6
8 Libti� CVE-2017-7601 4 2 94 94 0% 27 7 94 94 0% 78 107 2
9 Libti� CVE-2016-3623 4 3 130 130 0% 60 7 130 100 23% 102 21 1
10 Libti� CVE-2017-7595 4 3 130 130 0% 10 7 130 130 0% 18 31 1
11 Libti� bugzilla 2611 4 3 130 130 0% 61 7 130 112 14% 87 15 1
12 Binutils CVE-2018-10372 5 3 74 74 0% 9 7 74 39 47% 25 1 33
13 Binutils CVE-2017-15025 4 3 130 130 0% 0 7 130 130 0% 0 0 6
14 Libxml2 CVE-2016-1834 4 3 260 260 0% 6 7 260 260 0% 22 0 12
15 Libxml2 CVE-2016-1838 4 4 199 199 0% 4 7 199 199 0% 4 0 10
16 Libxml2 CVE-2016-1839 5 3 65 65 0% 0 7 65 65 0% 0 0 14
17 Libxml2 CVE-2012-5134 4 3 260 260 0% 44 7 260 134 48% 80 271 7
18 Libxml2 CVE-2017-5969 4 3 260 260 0% 0 7 260 154 41% 21 2 1
19 Libjpeg CVE-2018-14498 4 3 260 260 0% 42 7 260 128 51% 78 108 2
20 Libjpeg CVE-2018-19664 4 3 130 130 0% 43 7 130 130 0% 84 26 1
21 Libjpeg CVE-2017-15232 5 3 955 955 0% 0 7 955 955 0% 0 0 26
22 Libjpeg CVE-2012-2806 4 3 260 259 0% 68 7 260 145 44% 110 3 3
23 FFmpeg CVE-2017-9992 6 3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
24 FFmpeg Bugzilla-1404 4 2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
25 Jasper CVE-2016-8691 4 3 260 260 0% 72 7 260 96 63% 69 7 1
26 Jasper CVE-2016-9387 5 3 65 65 0% 54 7 65 17 74% 111 1 7
27 Coreutils Bugzilla 26545 5 3 1025 1025 0% 74 7 1025 949 7% 119 2 25
28 Coreutils GNUBug 25003 4 4 199 198 1% 114 7 199 172 14% 196 0 6
29 Coreutils GNUBug 25023 4 2 64 64 0% 32 7 64 64 0% 1 2 7
30 Coreutils Bugzilla 19784 4 3 - - - - - 770 770 0% 6 0 38

Table 2. Comparison with repair tools. The experiments have been executed with timeout of 1 hour [8]. For P������ and
A������ the results show only the top-ranked patch, while for E������F�� the results capture the only patch generated.

Benchmark Program #Vul Generated Patches Correct Patches
Prophet Angelix ExtractFix Prophet Angelix ExtractFix

E������F��

Libti� 11 7 7 9 1 0 6
Binutils 2 - - 2 - - 1
Libxml2 5 3 0 4 0 0 2
Libjpeg 4 3 - 3 1 - 2
FFmpeg 2 - - 2 - - 2
Jasper 2 2 2 2 0 0 1
Coreutils 4 2 - 2 0 - 2

Total 30 17 9 24 2 0 16

to patch in-feasibility. Column ⇠>AA42C? indicates whether
CEGIS �nishes with a patch that is syntactically or semanti-
cally equivalent with the developer patch and column '0=:
shows the corresponding highest rank position. The # /�
values for ID 23 and 24 in Table 1 indicate that both CEGIS
and CPR have not been able to produce any results because
the execution of the test driver code resulted in an unex-
pected memory fault for our underlying concolic execution

engine. The "-" signs for CEGIS for ID 30 mean that it was
not able to generate any patch within the timeout.

Input and patch space exploration. The comparison of
the '0C8> columns in Table 1 shows that in 14 of 30 cases CPR
can produce signi�cantly better patch space reduction than
CEGIS. In the remaining 16 cases, both perform similarly. For
a few subjects, CPR resulted in 0% reduction, partly because
of the loop unrolling (and hence longer paths) in symbolic

CPR can gradually refine the patch space via
concolic exploration

CPR can be used for test-
guided general-purpose
repair and security repair

CPR provides
highly ranked
patches

Concolic Program Repair

yannic.noller@nus.edu.sg 27Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

State of the Art

yannic.noller@nus.edu.sg 3Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

Buggy Program

Patched Program

Heuristic repair
Constraint-

based repair

Learning-

based repair

Automated Program Repair

Generate repair

candidate

Validate repair

candidate

Extract

constraints

Patch synthesis

Learning

inference

Predict patch

Test Suite
Code

Corpus

Challenges
How to provide high quality but

few patches?

How to avoid non-sensical
patches?

How to produce less overfitting
patches?

How to repair bugs in the
absence of many test cases?

Workflow

yannic.noller@nus.edu.sg 8Concolic Program Repair

Input OutputConcolic Program Repair

Patch Pool
Construction

Patch
Reduction

Input
Generation

Failing test
case(s)

Fix
Locations

Buggy
Program

User
Specification

Ranked
Patches

Research Problem State of the Art Our Solution Example Evaluation Summary

program
synthesis

refinement based
on explored paths
and specification

anytime algorithm
(gradual improvement)

path
constraint ɸ

Concolic
Execution

reduced
patch pool

new input

path
exploration

independent from
any test suite

yannic.noller@nus.edu.sg 18Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

P1

P2
P3

P4

Input Space Patch Space

P1

P2
P3

P4

P1

P2
P3

P4

P1

P2
P3

P4

Initial test input
x=7, y=0 ID Patch Template Parameter Constraint # Conc. Patches

1 x >= a a ≥ -10 ∧ a ≤ 7 18

2 y < b b ≥ 1 ∧ b ≤ 10 10

3 x == a || y == b (a=7 ∧ b ≥ -10 ∧ b ≤ 10) ∨
(b=0 ∧ a ≥ -10 ∧ a ≤ 10)

41

Patch Details

ID Patch Template Parameter Constraint # Conc. Patches

1 x >= a a ≥ -10 ∧ a ≤ 4 15

2 y < b b ≥ 1 ∧ b ≤ 10 10

3 x == a || y == b b=0 ∧ a ≥ -10 ∧ a ≤ 10 21

ID Patch Template Parameter Constraint # Conc. Patches

1 x >= a a ≥ -10 ∧ a ≤ 0 11

2 y < b False 0

3 x == a || y == b a = 0 ∧ b = 0 1

ID Patch Template Parameter Constraint # Conc. Patches

1 x >= a False 0

3 x == a || y == b a = 0 ∧ b = 0 1

P1: x > 3 ∧ y ≤ 5 ∧ ¬C

P2: x ≤ 3 ∧ y > 5 ∧ ¬C

P3: x ≤ 3 ∧ y ≤ 5 ∧ ¬C

Ⅰ

Ⅱ

Ⅲ

Ⅳ

69

46

12

1

correct patch

plausible
patches

P1

P2
P3

P4
P4: x > 3 ∧ y > 5 ∧ C

Ⅴ

1

ID Patch Template Parameter Constraint # Conc. Patches

3 x == a || y == b a = 0 ∧ b = 0 1

Our Approach

yannic.noller@nus.edu.sg 7Concolic Program Repair

Research Problem State of the Art Our Solution

plausible
patches

P2
P3

P4

Input Space Patch Space
initial test case refined patch set

explored path
(input partition)

correct
patch (set)

semantic approach incl. program synthesis
avoids non-compilable patches
provides symbolic reasoning cababilities

co-exploration of the input space and patch space
prune over-fitting patches
enables gradual improvement

user-provided specification
to reason about additional inputs
key aspect to handle absence of test cases

P1

Concolic
Program Repair

infeasbility checks
in both directions

represented with
abstract patches

Fresh look on
program repair

Infeasability checks

yannic.noller@nus.edu.sg 11Concolic Program Repair

Research Problem State of the Art Our Solution Example Evaluation Summary

.. in the input space .. in the patch space
Patch Reduction:

If a patch allows inputs to exercise a path
that violates the specification, we identify
this as a patch that overfits the valid set

of values and attempt to refine it.

∀"!, "" , . . , "# ∀%! , %" , . . , %$:
'()) ∧ ,%), - ∧ .% - ⟹ 0())

parameters input variables

specificationparameter
constraint

patch
constraint

path
constraint

Path Reduction:
For every generated input, we check that
there is one patch that can exercise the
corresponding path. Otherwise, the path

will not be explored.

' ∶= % > 3 ∧ 5 > 5 ∧ 7
7 ∶= (% = 0 ∨ 5 = 0)

For example:

