
A small dataset of 21 Java programs, with varying complexities in their worst-case
conditions, were assembled/ created for evaluation. Generalisers were allowed

 a maximum of 10 rounds of feedback before being marked unsuccessful.
The larger GPT 4 performs much better than 3.5, being more receptive of feedback,
more consistent in response formatting and offering more creative solutions. This may
indicate that the real-world application of this framework only became viable recently.
Generator evaluation has a surprising amount of influence on performance, expressing
gens. as executable Python code being faster to

 evaluate and leading to higher success rates,
 possibly due to GPTs extended training on code.

LLMs can accurately predict the constraints of
 program inputs over which it could not generalise,
 indicating the possibility for further improvements.

90.490.490.4

EXPLORING
COMPLEXITY
ESTIMATION WITH
SYMBOLIC
EXECUTION AND
LARGE LANGUAGE
MODELS

RESEARCH QUESTIONS PROPOSED FRAMEWORK

This work explores the symbiosis of symbolic
analysis and large language models (LLMs).
In particular, we focus on estimating worst-
case complexities by expanding the reach of
symbolic analysis using LLMs. We attempt to
build a closer integration of Symbolic
PathFinder (SPF) and models such as
ChatGPT. Preliminary results indicate that
LLMs can help SPF to amplify its search for
inputs which could trigger denial-of-service
attacks. The results and insights gained in
this work will help researchers and software
practitioners to design and develop secure
software systems in the future. All datasets
and implemented tools will be made open-
source following open-source principles.

AUTHORS

Adrians Skapars (University of Manchester)
adrians.skapars@postgrad.manchester.ac.uk

Youcheng Sun (University of Manchester)
Yannic Noller (SUTD)
Corina Pasareanu (Nasa Ames/CMU)

(1) A Java program input to a symbolic analysis tool such as SPF-WCA [1].
(2) Symbolic analysis gets the constraints for symbolic inputs which cause the
 worst-case execution time of the program, for several smaller input sizes N.

Exhaustive search for worst-case constraints is
only tractable for smaller inputs. Can LLMs predict
what the constraints will be for large inputs?
If so, can we externalise their internal decision
procedure for making these predictions?
Can LLMs refine their predictions based on some
reward mechanism? Can this be automated?
Can decision procedures be mapped to
mathematical generalisations, defining the set of
constraints for any input size?
How best to evaluate solutions to this problem?

GPT 4

GPT 3.5

LLM GEN CODE GEN

57.157.157.1

76.276.276.2

42.942.942.9

METHOD AND PRELIMINARY FINDINGS

1

2

3

4 7

FUTURE WORK
Besides for manual inspection, we currently have
limited guarantees that the generalisations output
hold for all input sizes, N.
We plan to use theorem provers to show that our
outputs are indeed valid. Alternatively, we may
provide extensive statistical verification.
Future work can benchmark against our results,
but we are also interested in comparing against
existing methods for finding worst-case inputs.
Our approach is limited by an LLMs context-
window size, which could be partially remedied
by normalising constraints to shorter formats.
We aim to minimise the number of LLM API calls.

(3) An LLM is used as a generaliser
 that attempts to catch the pattern
 over constraints of any size N.
(4) If the generator is in the form
 of code then run it, otherwise
 apply it using another LLM,
 over values of N for which you
 already know the true constraints for.
(5) If the predictions do not match, give this feedback to the generaliser and repeat.
(6) If the generator can recreate all known and hidden constraints, deem it correct.
(7) Use yet another LLM to convert the generator into a mathematical definition, of a
 set of constraints parametrized by an arbitrary N, for formal analysis.

RELATED WORK

[1] K. Luckow, R. Kersten and C. Păsăreanu,
"Symbolic Complexity Analysis Using Context-
Preserving Histories," 2017 IEEE ICST, pp. 58-68
[2] TDi Wang and Jan Hoffmann, “Type-guided
worst-case input generation”. 2019 Proc. ACM
Program. Lang. 3, POPL, Article 13, 30 pages.

Symbolic
Analysis

Executor

Validator

Generaliser

Converter

Program Constraints

Predictions

Generator

Feedback

(Final)

Generator

Generalisation

1 2

3

4 5

6

7

Software Component LLM Component

Generalisation success rate % over dataset,
under various framework configurations

