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RESEARCH QUESTIONS

o Exhaustive search for worst-case constraints is
only tractable for smaller inputs. Can LLMs predict

what the constraints will be for large inputs?
o If so, can we externalise their internal decision

procedure for making these predictions?

PROPOSED FRAMEWORK

(1) A Java program input to a symbolic analysis tool such as SPF-WCA [1].
(2) Symbolic analysis gets the constraints for symbolic inputs which cause the

worst-case execution time of the program, for several smaller input sizes N.
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METHOD AND PRELIMINARY FINDINGS

o A small dataset of 21 Java programs, with varying complexities in their worst-case
conditions, were assembled/ created for evaluation. Generalisers were allowed
a maximum of 10 rounds of feedback before being marked unsuccessful.

e The larger GPT 4 performs much better than 3.5, being more receptive of feedback,
more consistent in response formatting and offering more creative solutions. This may
indicate that the real-world application of this framework only became viable recently.

« Generator evaluation has a surprising amount of influence on performance, expressing
gens. as executable Python code being faster to
evaluate and leading to higher success rates,
possibly due to GPTs extended training on code.

e LLMs can accurately predict the constraints of

CODE GEN

D

Generalisation success rate 7 over dataset,
under various framework configurations

LLM GEN

GPT 4 ( 76.2

GPT 3.5 ( 429

program inputs over which it could not generalise,
indicating the possibility for further improvements.

FUTURE WORK

» Besides for manual inspection, we currently have
limited guarantees that the generalisations output
hold for all input sizes, N.

« We plan to use theorem provers to show that our
outputs are indeed valid. Alternatively, we may
provide extensive statistical verification.

e Future work can benchmark against our results,
but we are also interested in comparing against
existing methods for finding worst-case inputs.

e Our approach is limited by an LLMs context-
window size, which could be partially remedied
by normalising constraints to shorter formats.

« We aim to minimise the number of LLM API calls.



