EXPLORING
COMPLEXITY
ESTIMATION WITH
SYMBOLIC

RESEARCH QUESTIONS

o Exhaustive search for worst-case constraints is
only tractable for smaller inputs. Can LLMs predict

what the constraints will be for large inputs?
o If so, can we externalise their internal decision

procedure for making these predictions?

PROPOSED FRAMEWORK

(1) A Java program input to a symbolic analysis tool such as SPF-WCA [1].
(2) Symbolic analysis gets the constraints for symbolic inputs which cause the

worst-case execution time of the program, for several smaller input sizes N.

Software Component LLM Component

e Can LLMs refine their predictions based on some © d A o . < ®
EXECUTION AND reward mechanism? Can this be automated? Program —)> Symbo_lic - Constraints —Y| Generaliser L— (Final)
L AR GE L AN GU AGE e Can decision procedures be mapped to \Ana|y5|s) — . Y) | Generator
mathematical generalisations, defining the set of | | “. (@) Generator 5 x
MODELS constraints for any input size? (3) An LLM is used as a generaliser '._ \ 4 r N
e How best to evaluate solutions to this problem? that attempts to catch the pattern 2 1 Converter

over constraints of any size N. Executor L)
This work explores the symbiosis of symbolic public class @) (4) If the generator is in the form TS : N 7
analysis and large language models (LLMs). publégﬂiz;ic void falgechar{] of code then run it. otherwise @ Predif:tions Feec::lback ® Generalisation (7)
In particular, we focus on estimating worst- ff Somsthing o apply it using another LLM, p h 4 : ~
case complexities by expanding the reach of ' over values of N for which you “¥»| Validator
symbolic analysis using LLMs. We attempt to if already know the true constraints for. \ /
build a closer integration of Symbolic I (5) If the predictions do not match, give this feedback to the generaliser and repeat.
PathFinder (SPF) and models such as SNETRAINT N/A ® (6) If the generator can recreate all known and hidden constraints, deem it correct.
ChatGPT. Preliminary results indicate that o ik (7) Use yet another LLM to convert the generator into a mathematical definition, of a
LLMs can help SPF to amplify its search for n2!1=in3 && inl 1= in3 && inl != in2 && in0 != in3 && inD '= in2 && in0 = i1 set of constraints parametrized by an arbitrary N, for formal analysis.
inputs which could trigger denial-of-service 1= Gk 13 1o A 1S 1= A 2 1= £ 2 1= i 1
attacks. The results and insights gained in _ : » : . : : : AR ool : R = . ®| The python code generates a set of
this work will help researchers and software =0 84,06 1= 08 44,06 1= 17 44,1 1= 00 A4S =17 44 1S 6 A ino 1= ind, ino 1= i, ind 1= ind nequalitics that stipulate a1l "in
practitioners to design and develop secure : | - (AU ST AR SRU S RS, b s and, and s ang, At s variables from @ to "N-1" are pairwise
software systems in the future. All datasets hi_g_:;—t S ® A | e different. The mathematical definition
and implemented tools will be made open- i (N) | = in3, inl != in4, in2 != in3, in2 != ind, in3 1= ing | WOuld be:
source following open-source principles. et raint *‘*‘,,_I m !] il S nhe e e [0 ot :14 PR S = {in[i] # in[j] | @ < i < j < N}

nstraint in4, in2 != in5, in3 != in4, i = in5, in4 != inS for all i, j € Z+

AUTHORS

Adrians Skapars (University of Manchester)
e adrians.skapars@postgrad.manchester.ac.uk
Youcheng Sun (University of Manchester)

Yannic Noller (SUTD)
Corina Pasareanu (Nasa Ames/CMU)

RELATED WORK

[1] K. Luckow, R. Kersten and C. Pasareanu,
"Symbolic Complexity Analysis Using Context-
Preserving Histories," 2017 IEEE ICST, pp. 58-68
[2] TDi Wang and Jan Hoffmann, "Type-guided
worst-case input generation”. 2019 Proc. ACM
Program. Lang. 3, POPL, Article 13, 30 pages.

METHOD AND PRELIMINARY FINDINGS

o A small dataset of 21 Java programs, with varying complexities in their worst-case
conditions, were assembled/ created for evaluation. Generalisers were allowed
a maximum of 10 rounds of feedback before being marked unsuccessful.

e The larger GPT 4 performs much better than 3.5, being more receptive of feedback,
more consistent in response formatting and offering more creative solutions. This may
indicate that the real-world application of this framework only became viable recently.

« Generator evaluation has a surprising amount of influence on performance, expressing
gens. as executable Python code being faster to
evaluate and leading to higher success rates,
possibly due to GPTs extended training on code.

e LLMs can accurately predict the constraints of

CODE GEN

D

Generalisation success rate 7 over dataset,
under various framework configurations

LLM GEN

GPT 4 (76.2

GPT 3.5 (429

program inputs over which it could not generalise,
indicating the possibility for further improvements.

FUTURE WORK

» Besides for manual inspection, we currently have
limited guarantees that the generalisations output
hold for all input sizes, N.

« We plan to use theorem provers to show that our
outputs are indeed valid. Alternatively, we may
provide extensive statistical verification.

e Future work can benchmark against our results,
but we are also interested in comparing against
existing methods for finding worst-case inputs.

e Our approach is limited by an LLMs context-
window size, which could be partially remedied
by normalising constraints to shorter formats.

« We aim to minimise the number of LLM API calls.

