
A small dataset of 21 Java programs, with varying complexities in their worst-case
conditions, were assembled/ created for evaluation. Generalisers were allowed 

      a maximum of 10 rounds of feedback before being marked unsuccessful.
The larger GPT 4 performs much better than 3.5, being more receptive of feedback,
more consistent in response formatting and offering more creative solutions. This may
indicate that the real-world application of this framework only became viable recently.
Generator evaluation has a surprising amount of influence on performance, expressing
gens. as executable Python code being faster to 

      evaluate and leading to higher success rates,
      possibly due to GPTs extended training on code.

LLMs can accurately predict the constraints of 
      program inputs over which it could not generalise,
      indicating the possibility for further improvements.
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RESEARCH QUESTIONS PROPOSED FRAMEWORK

This work explores the symbiosis of symbolic
analysis and large language models (LLMs).
In particular, we focus on estimating worst-
case complexities by expanding the reach of
symbolic analysis using LLMs. We attempt to
build a closer integration of Symbolic
PathFinder (SPF) and models such as
ChatGPT. Preliminary results indicate that
LLMs can help SPF to amplify its search for
inputs which could trigger denial-of-service
attacks. The results and insights gained in
this work will help researchers and software
practitioners to design and develop secure
software systems in the future. All datasets
and implemented tools will be made open-
source following open-source principles.
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(1) A Java program input to a symbolic analysis tool such as SPF-WCA [1].
(2) Symbolic analysis gets the constraints for symbolic inputs which cause the 
     worst-case execution time of the program, for several smaller input sizes N.

Exhaustive search for worst-case constraints is
only tractable for smaller inputs. Can LLMs predict
what the constraints will be for large inputs?
If so, can we externalise their internal decision
procedure for making these predictions?
Can LLMs refine their predictions based on some
reward mechanism? Can this be automated?
Can decision procedures be mapped to
mathematical generalisations, defining the set of
constraints for any input size?
How best to evaluate solutions to this problem?
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FUTURE WORK
Besides for manual inspection, we currently have
limited guarantees that the generalisations output
hold for all input sizes, N.
We plan to use theorem provers to show that our
outputs are indeed valid. Alternatively, we may
provide extensive statistical verification.
Future work can benchmark against our results,
but we are also interested in comparing against
existing methods for finding worst-case inputs.
Our approach is limited by an LLMs context-
window size, which could be partially remedied
by normalising constraints to shorter formats.
We aim to minimise the number of LLM API calls.

(3) An LLM is used as a generaliser
      that attempts to catch the pattern 
      over constraints of any size N. 
(4) If the generator is in the form 
      of code then run it, otherwise 
      apply it using another LLM, 
      over values of N for which you
      already know the true constraints for.
(5) If the predictions do not match, give this feedback to the generaliser and repeat. 
(6) If the generator can recreate all known and hidden constraints, deem it correct. 
(7) Use yet another LLM to convert the generator into a mathematical definition, of a
      set of constraints parametrized by an arbitrary N, for formal analysis.
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