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Abstract

During the whole life-cycle of software-intensive systems in safety-critical
domains, system models must consistently co-evolve with quality evaluation
models like fault trees. However, performing these co-evolution steps is a
cumbersome and often manual task. To understand this problem in detail,
we have analyzed the evolution and mined common changes of architecture
and fault tree models for a set of evolution scenarios of a part of a factory
automation system called Pick and Place Unit. On the other hand, we de-
signed a set of intra- and inter-model transformation rules which fully cover
the evolution scenarios of the case study and which o↵er the potential to
semi-automate the co-evolution process. In particular, we validated these
rules with respect to completeness and evaluated them by a comparison to
typical visual editor operations. Our results show a significant reduction of
the amount of required user interactions in order to realize the co-evolution.

Keywords: system architecture, fault trees, safety, model co-evolution,
model transformation

1. Introduction

Quality of service (QoS) attributes such as safety, reliability and perfor-
mance are crucial for software-intensive systems, e.g., in safety-critical or
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automation systems. Such systems (e.g. aircraft and automation systems,
robotics) are not tolarable with an errogoneus design since they are playing
fundamental roles in human lives. Therefore quality evaluation process dur-
ing the development of systems from design time to runtime is inevitable.
A rigorous quality evaluation is among the key methods for the dependable
engineering of such systems. To that end, model-based approaches have
been proposed which construct quality evaluation models from system mod-
els to gain knowledge about the quality of a system by checking these models
against formally specified quality requirements [37].

In model-based quality evaluation, the consistency of the involved mod-
els is of utmost importance. For example, the failures of an architectural
component must be adequately considered in an associated fault tree model.
While this consistency requirement can be reasonably met for a particular
snapshot of a system, quality evaluation models typically become outdated
when the system evolves, i.e., quality evaluation models and system models
evolve in an inconsistent way. As a consequence, quality evaluation leads
to unexpected and highly improper results. An example in the context of
hazard analysis of component-based embedded systems is the addition of a
new port for a sensor of a component without a corresponding addition of the
sensor failures in the relevant fault trees. This will clearly lead to wrong haz-
ard analysis results. Hence, loosely inter-related models such as architectural
models and quality evaluation models should consistently evolve in parallel,
a phenomenon to which we refer to as (consistent) model co-evolution in the
remainder of this paper.

Since loosely inter-related models are typically changed in isolation of
each other, one adequate approach to support developers is model synchro-
nization, i.e., the task of adapting a model in response to changes in one of
its inter-related counterparts in order to achieve consistent co-evolution. In
general, however, achieving this kind of model co-evolution is not a straight-
forward task [61]: quality evaluation models cannot be fully generated from
system models, and most relations between the elements of the di↵erent
models are not simple one-to-one correspondences. In other words, achiev-
ing consistent co-evolution cannot be fully automated as usually assumed
by existing approaches to model synchronization (see Section 2 for a more
detailed discussion of related work in this area). At best, developers may
be supported by recommending possible synchronization actions, e.g. as in
the model-based (co-)evolution framework known as CoWolf [29]. To achieve
consistent co-evolution, CoWolf follows a rule-based approach where incre-



mental model transformations are used to recommend both intra- and inter-
model change actions. However, since the adequacy of the recommendations
strongly depends on the transformation rules being used by the tool, the evo-
lution problem is shifted to the engineering of proper transformation rules.
These should capture evolution and co-evolution steps being considered as
useful by the developers using the tool.

In this paper, we tackle this problem of engineering proper transformation
rule sets for an important class of models in the context of model-based
hazard analysis of software-intensive systems, namely system architecture
models and fault tree models. We extend our previous work [30] on the
evolution of the so-called Pick and Place Unit (PPU) [58], a case study from
the automation engineering domain which is commonly used in the German
priority program “Design for Future – Managed Software Evolution” [33].
To study co-evolution in terms of the PPU, we created consistent software
architecture and fault tree models for all safety relevant evolution scenarios.
The contributions of this paper are:

1. A thorough quantitative analysis of the evolution scenarios with respect
to the co-evolution of the models, i.e., how changes in one model a↵ect
changes in the other model. We show that the models do not co-evolve
in a systematic, automatable way and instead expertise of the developer
is required to achieve co-evolution. This is a minor contribution which,
while not being exceedingly surprising, confirms the findings of previous
research in this context.

2. The major contribution is a set of model transformation rules for 1) the
independent evolution of software architecture and fault tree models
and 2) synchronization of one model based on changes in another model
ensuring a correct co-evolution of both models. In the evaluation of
the rules, we show that the presented set of model transformations is
complete, i.e., it supports performing all co-evolutions of the case study
scenarios, and improves the task e�ciency (cf. Quality in Use [1]) by
reducing the amount of required model transformation applications to
realize the co-evolution by, on average, 52% compared to visual editing
operations and 85% compared to atomic model changes. Additionally,
we implemented these rules in the tool CoWolf [29] to enable the co-
evolution of fault trees and software architecture models.

To enable reproducibility of our results, we make all models for the sce-
narios, the set of model transformation rules as well as the code for the



evaluation publicly available.1

The remainder of this paper is structured as follows. In the next sec-
tion, we discuss related work in the areas of safety evaluation models and
their automatic generation as well as di↵erent approaches to achieve consis-
tent co-evolution of inter-related models. Section 3 briefly sketches the used
modeling and model transformation languages. Thereafter, we present the re-
sults of the quantitative analysis of the co-evolution of the models of the case
study in Section 4. Section 5 contains a description of the developed inter-
and intra-model transformation rules for architecture and fault tree models.
We evaluate this set of model transformation rules in Section 6. Finally,
we conclude and present an outlook on planned future work in incremen-
tal analysis of quality models and supporting the developer selecting model
transformations by analyzing historic developer decisions on co-evolutions.
The appendix contains a thorough description of all evolution scenarios and
their impact on system architecture and fault tree models.

2. Related Work

The work presented in this paper draws from two separate research areas,
namely the work on automatic/semi-automatic generation of safety evalua-
tion models in the architectural design phase and general approaches that
aim at keeping dependent models consistent while individual models evolve.

Safety evaluation models and their automatic generation: Several
evaluation models have been proposed to facilitate a quantitative safety anal-
ysis based on architectural specifications [37]. According to the current stan-
dards for the development of safe systems in di↵erent application domains
[16, 44, 45], common fault trees [3, 10, 11, 15, 21, 32, 35, 38, 46, 65, 66, 69, 81]
are widely used as evaluation models. In-line with these industrial needs we
focus our research in this paper on common fault trees as the main safety
artifact. Alternative safety evaluation models being used in academia are Dy-
namic Fault Trees (DFTs) [4, 8, 22, 28], Generalized Stochastic Petri Nets
(GSPNs) [73], State-Event Fault Trees (SEFTs) [39, 48, 49] or Markov mod-
els [12, 13]. In contrast to pure quantitative safety evaluation models also
FMEA (Failure Mode and E↵ect Analysis) tables could be considered and
are constructed from architecture specifications [18, 19, 20, 67]. To construct

1https://www.informatik.hu-berlin.de/en/forschung-en/gebiete/se/
research/ongoingprojects/ensure/coevolution/

https://www.informatik.hu-berlin.de/en/forschung-en/gebiete/se/research/ongoingprojects/ensure/coevolution/
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the safety artifacts, the system architecture models are often annotated with
failure propagation models [24, 26, 35, 50, 48, 66]. These failure propagation
models are commonly combinatorial in nature [66, 68] thus producing static
fault trees.

Beside annotating an architecture specification, there are also approaches
to construct a safety artifact via model checking techniques [36, 40, 41, 42,
59]. To keep the models consistent with the architectural models, safety eval-
uation models are usually generated with generative techniques rather than
using (co-)evolution techniques. Such generative techniques are commonly
unidirectional and generate a safety evaluation model from the architectural
specifications manually [35] or quasi-automatic [31, 32, 66, 68] if the required
annotations are present in the architectural model. In contrast to all the
above mentioned approaches, this work focuses on co-evolution of architec-
ture specification and safety evaluation models, and thus tackles the problem
from a di↵erent angle.

Model synchronization and co-evolution approaches: Comple-
mentary to the generative approaches in the safety domain, co-evolution of
multiple models, and specifically ensuring their consistency, has been named
as one of the challenges of software evolution [75]. Since then, several ap-
proaches have been developed which address the problem of how to achieve
a consistent co-evolution of multiple inter-related MDE artifacts.

Many approaches which aim at achieving consistent co-evolution of mul-
tiple inter-related models render the problem as a synchronization problem.
Existing work on model synchronization typically focuses on fully automatic
approaches using model transformation languages like Triple Graph Gram-
mars (TGGs)[34, 76], PMT [84], Atlas Transformation Language (ATL) [47],
Groove [70], Query/View/Transformation (QVT) [64], and the Janus Trans-
formation Language (JTL) [17] (see also [77] for a recent special issue on cur-
rent model transformation approaches). Bergmann et al. [9] present a novel
type of model transformation to which they refer to as change-driven transfor-
mations. Change-driven transformations are triggered by model changes in
a source model and can be utilized to incrementally synchronize inter-related
target models. Similar approaches are presented in [60, 62, 87]. Madari et
al. [60] emphasize the explicit maintenance of trace models between inter-
related models in order to facilitate incremental model synchronization when
source and target models originate from di↵erent domains. We draw on
available MDE technologies by using the Henshin model transformation lan-
guage [5, 80] as one of the technical foundations of our approach. However,



in contrast to ours, existing approaches and do not enable the user to influ-
ence the synchronization and are therefore not applicable for problems where
co-evolution and thus synchronization is not deterministic as in our case. An
exception of this is the approach proposed by Milovanovic et al. [62] which
comprises some interactive elements when adapting database schemata in
response to changes in object-oriented data models. User interactions are
utilized to improve the accuracy of the di↵erence calculation when deter-
mining the source model changes. The actual synchronization, however, is
fully automated, which is rather straight forward in their scenario due to the
structural similarity of object-oriented and relational data models.

Another class of approach for dealing with model inconsistencies in inter-
related models is generally known as model repair. Several approaches have
been developed which deal with inconsistencies by constructing repair ac-
tions [25, 27, 63]. They address the problem of consistency preservation in
the context of user induced changes. However, these repair actions are re-
stricted to small changes and do not enable complex transformations which
are supported by our approach.

Finally, the co-evolution of di↵erent kinds of MDE artifacts has been
studied in the literature. An example is the work of Ruhroth and Wehrheim
[74] for supporting the co-evolution of models of the same modeling language
where one model is the refinement of another. Moreover, several approaches
support the co-evolution of meta models and related artifacts, such as the
migration of instance models [14, 82], model transformations [75], or syntactic
and semantic constraints [23] in response to meta model changes.

3. Background

Our work is based on model-driven software engineering, particularly,
modeling software architectures and fault trees as well as specifying model
transformations. Therefore, we briefly introduce our two modeling languages
including their meta-models as well as the Henshin transformation language
[5] which we use to specify model transformations.

3.1. Modeling Languages

This paper studies the co-evolution of two types of models, detailed in
the Sections 3.1.1 and 3.1.2: i.) system architecture (SA) models, focusing on
a structural system decomposition into components and their connections,



as well as ii.) fault trees (FT), which are used to analyze the causes of un-
desired system states. In both cases, well-known concepts from architecture
description languages (ADLs) [83] and fault tree modeling [85], respectively,
are used. We use the Eclipse Modeling Framework (EMF) [79] as a technical
foundation.

3.1.1. Architectural Modeling
Similar to common ADLs, the core entities provided by our SA language

for describing system architectures are components, ports, and connectors.
Figure 1 depicts the SA meta-classes and their relations. The SA distin-
guishes between type and instance level of components and ports, i.e., two
meta-classes exist for each of these elements (ComponentType and Compo-
nentInstance; PortType and PortInstance). Component types are further dis-
tinguished between hardware and software (HardwareComponent, Software-
Component); hardware components may be electronic (ElectronicDevice, e.g.,
a Sensor) or mechanical (MechanicalDevice, e.g., an Actuator). Components
may be composite structures of other interconnected components. A compo-
nent type contains a set of ports (PortType); on the instance level, con-
nectors (Connector) are used to assemble component instances via ports
(PortInstance). A set of intra-model constraints (not included in Figure 1),
expressed in OCL, completes the specification of the SA meta-model.

3.1.2. Failure Model and Fault Trees
Figure 2 depicts the FT meta-classes and their relations. The FT lan-

guage allows the definition of a failure model and a set of corresponding fault
trees. A failure model includes the definition of ErrorTypes, ErrorInstances,
FailureTypes and FailureInstances, based on Avižienis et al.’s taxonomy [6]. To
exemplify the di↵erence between instance- and type-level, a sensor error is
an ErrorType, while the error of a specific sensor is an ErrorInstance. The core
(abstract) entities of a fault tree are events (Event) and gates (Gate). A gate
is a boolean function (AND, OR, XOR, etc.) that combines multiple input
events into a single output event. Three di↵erent concrete types of events
exist: i.) the top event (Hazard)—a FT’s root element—corresponds to the
undesired real-life hazard whose causes are analyzed using the FT; ii.) basic
events (BasicEvent)—a FT’s leaf elements—with associated probabilities of
occurrence correspond to an ErrorInstance, which is not further decomposed;
iii.) intermediate events (IntermediateEvent) are all other events in a FT, i.e.,
they are both outputs and inputs of gates. Like for the SA meta-model,



0..1         0..*
inComponent   inPorts

0..1         0..*
outComponent   outPorts

Figure 1: Classes and relations in the SA meta-model

Figure 2: Classes and relations in the FT meta-model



the FT meta-model is completed by a set of OCL constraints (not shown in
Figure 2).

3.1.3. Modeling of SA/FT Interrelations
Generic trace elements are used to connect component instances in an

SA model to failure and error instances in a corresponding FT model. Such
trace elements are represented as instances of the generic trace meta-model
provided by Henshin (shown in Figure 3). As we can see in Figure 3, a Trace
instance may be used to relate arbitrary model elements of type EObject, the
common generic base type of any model element in EMF. Our convention is
to use component instances in an SA model as source elements while failure
and error instances in a corresponding FT model are used as target elements
of Trace instances.



Figure 4: Henshin rule specifying the creation of a PortInstance

3.2. Henshin Model Transformations

Trace 

0..*

0..*

source: EObject
target: EObject

name: EString

[0..*] subTraces

Figure 3: Trace meta-
model [2] used for mod-
eling SA/FT interrela-
tions

Henshin [5] is a high-level graph rewriting and
model transformation language and tool targeting
models defined in the Eclipse Modeling Framework
(EMF) [79]. Henshin is based on the foundations of
algebraic graph transformation [72]. It provides a pow-
erful modeling formalism including multi-rules, control
flow and higher order transformations. Furthermore, it
supports execution by interpretation, state space gen-
eration and an API to execute the model transforma-
tions in normal programs.

Figure 4 shows a simple Henshin transformation
rule, typed over the previously presented SA meta-
model, for the creation of a port instance. We present
the rule using the visual syntax of the Henshin transfor-
mation language in which the left- and right-hand sides of a rule are merged
into one graph, indicating the model patterns to be found, to be created and
being forbidden by the rule. The rule CreatePortInstance is applicable if 1)
a component instance and a port type with a dedicated name given as rule
parameter port type exist in the model, and 2) a port instance with the same
name as the name of the port instance to be created, given by parameter
port instance, does not already exist connected to the component instance.
If the rule can be executed, a port instance is created with the given name
and connected to the port type and the component instance.

More generally, apart from the example illustrated in Figure 4, the left-
hand side of a rule comprises all model elements stereotyped by delete and



preserve. The right-hand side contains all model elements annotated by
preserve and create. Negative application conditions, i.e., existing model
patterns preventing a rule from being executed, are stereotyped by forbid
and rendered in blue color.

4. Case Study on Architecture and Fault Tree Co-Evolution

The system we studied is an industrial production plant, called pick&place
unit (PPU). The PPU is a factory automation system that mimics an indus-
trial robot that moves work pieces (WPs) between di↵erent working positions
where they are stored or processed. Such systems are an interesting case for
evolution since they contain mechanical parts, electrical parts, and software
parts. All these parts can be evolved individually or in combination. Addi-
tionally, these systems are also typically safety-critical.

The evolution scenarios for the PPU have been described in [58] and we
selected a subset of 12 scenarios for our study [30] out of these 14 evolution
scenarios —those that were identified as including system changes a↵ecting
the system’s safety properties. For each scenario, we manually created SA
and FT models, conforming to the meta-models described in Section 3.1.
To reliably identify model elements over time, successive model versions in
the historical evolution have been created as revisions of each other, and
model elements have been equipped with persistent yet universally unique
identifiers [52, 56]. Section 4.1 briefly summarizes the di↵erent scenarios and
the changes they implied to the software architecture and fault tree models.
Section 4.2 includes the co-evolution analysis.

4.1. Evolution Scenarios

Section 4.1.1 includes a compact description of the PPU’s initial scenario
(SC0), including the corresponding SA and FT model. A brief summary
of the changes in the subsequent evolution scenarios is provided by Sec-
tion 4.1.2. Note that in the latter, changes to the SA and FT models—as
detailed in Section Appendix A—are not covered for the sake of brevity.
Figure 5 summarizes the SA and FT models for the scenarios SC0–10, in-
cluding changes. Additional models can be found in the detailed description
of the scenarios in Appendix A (Figures A.13–A.15). Note that a similar
description of the PPU scenarios is also provided in [58] (without consid-
ering SA and FT models) and [30]. However, we decided to include it to
make this paper self-contained. Table 1 provides a quantitative summary
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(a) SA component model of the PPU
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Figure 5: SA and FT models for the PPU scenarios SC0–10.
(Legend for change operations: + addition, - deletion, # replacement by other implemen-
tation, ⇠ new version of implementation.)
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SC0 8 0 3 0 14 0 5 0 8 0 3 0 4 0 8 0 4 0 4 0
SC2 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SC3 2 0 1 0 8 0 0 0 7 0 1 0 1 0 4 0 1 0 1 0
SC4a 0 0 0 0 5 5 0 0 5 5 0 0 0 0 6 6 0 0 0 0
SC4b 0 0 0 0 5 0 0 0 5 0 0 0 0 0 6 0 5 0 0 0
SC7 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
SC8 2 0 0 0 2 0 1 0 4 0 0 0 1 0 4 0 2 0 1 0
SC9 2 0 1 1 3 0 1 0 3 0 2 0 2 0 3 0 2 0 2 0
SC10 1 0 0 0 6 0 0 0 11 0 0 0 2 0 11 0 2 0 2 0
SC11 0 0 0 0 2 0 0 0 7 0 1 0 1 0 7 0 1 0 1 0
SC13 1 0 0 0 1 5 0 0 1 5 0 0 0 0 1 6 0 1 0 0
SC14 1 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0
P

19 1 5 1 49 11 7 0 53 11 7 0 11 0 52 13 17 1 11 0
#Scn. 9 1 3 1 12 3 3 0 11 3 4 0 6 0 11 3 7 1 6 0

Table 1: Number of changes (by type) per scenario

of selected model changes to the SA and FT models in the di↵erent evolu-
tion scenarios. The column headers indicate the considered types of SA and
FT model changes, the latter are conceptually classified into failure model
changes and changes in the actual fault trees called Fault Tree 1 and Fault
Tree 2, respectively. For example the abbreviation +CpType denotes the ad-
dition of a ComponentType element, and -SCpInstance denotes the removal of
an ComponentInstance element of type SoftwareComponent. The first 12 rows
describe for each individual scenario the number of applied additions and
removals of specific elements in the considered models. The second to last
row provides the total number of occurrences for each addition or removal
over all scenarios, and the last row summarizes the number of scenarios, in
which each type of change was involved. Overall, this table gives an intuition
of how many changes occurred in each scenario, and how often each change
occurred during the (co-)evolution.

4.1.1. Initial Scenario (SC0)
In the initial scenario, the PPU consists of a stack, a crane, and a slide.

The crane places a WP at the slide, which serves as the output storage. The
PPU includes nine sensors, e.g., to detect the presence of a WP at the pick
up position of the stack and to detect the position of the crane. The PPU



processes only one kind of WPs (metallic).
In the SA model (Figure 5(a)), the PPU is decomposed into three top-level

component instances for stack, crane, and slide (depicted as part of the sorter
introduced in SC10)—with a dedicated component type for each. The stack
and the crane are further decomposed including the software components
responsible for their control. The FT model for this scenario includes five
error types (e.g., software implementation error, sensor error), three failure
types (e.g., position failure), as well as respective failure and error instances
for the respective component instances. Figure 5(b) shows an FT, referred
to as FT1, for the hazard that a WP is outside the system. Failure and
error instances are related to component instances during the development
of the transformations. For instance, a sensor component in Figure 5(a)
called atPositionStackS is related to the basic event called ’Sensor error for
positions of Stack occurs” in fault tree model given in Figure 5(b).

4.1.2. Evolution Scenarios (SC2–SC14)
• SC2 (Black Plastic WPs). The PPU is extended by a sensor in the
stack in order to distinguish a new type of WPs (black plastic) from
the already supported type of WPs.

• SC3 (Stamp Module Added). The PPU is extended by a module that
is used to stamp metallic WPs.

• SC4 (Inductive Sensors for Crane Positioning). The crane positioning
sensors are replaced by more robust devices.

• SC4b (Increase Reliability of Crane Positioning). As a variant of SC4
(which remains the basis for the next scenarios SC7–SC14), the new
sensors are added in addition to the (now remaining) existing sensors.

• SC7 (Additional White WPs). White WPs are supported by adding
another sensor to the stack.

• SC8 (Di↵erent Pressure Profiles). The PPU’s stamp is extended by a
proportional valve and an analogue pressure sensor to support stamping
with di↵erent pressure profiles.

• SC9 (Installation of Sorter). A sorter is added to the PPU, which
comprises a conveyor (belt) that transports WPs to the slide—now
located at the end of the belt.



• SC10 (Additional Slides and Pushers). Two additional slides are added
to both sides of the conveyor belt to increase the PPU’s output storage
capacity. To support this functionality, two corresponding pushers and
sensors to detect WPs are added.

• SC11 (Specific Order of Work Pieces). The PPU’s conveyor is extended
by additional sensors that serve to sort WPs by type, each type of WP
is transported to one of the three slides.

• SC13 (Potentiometer at the Crane). The crane’s five individual posi-
tioning sensors are replaced by a potentiometer to increase the accuracy
and to avoid spending cables and terminal blocks.

• SC14 (Incremental Encoder at the Crane). The crane’s potentiometer
is replaced by an incremental encoder to increase resistance to electro-
magnetic influences.

4.2. Lessons Learned from the Case Study

We described the di↵erent scenarios of the case study and the correspond-
ing changes of the software architecture and fault tree models in the previous
sections. Based on these models, we analyze how the two models co-evolve.
Particularly, we investigate the research question How high is the dependency
between changes of the SA and the FT models?

In the following, we describe two research approaches, namely correla-
tion and mining analysis and their results to answer the research question.
The first approach manually inspects the models and their changes and uses
Pearson’s correlation coe�cient to assess the dependency between changes
of both models (see Section 4.2.1). This approach has the advantage that it
only requires the type and amount of changes in each scenario and as such
can assess the dependency between parts of the models where no immedi-
ate connection exists. It has however the disadvantage that a correlation
between changes does not mean that the changed objects are actually con-
nected. Thus, as a complementing approach, we also mine the co-evolved
models to identify those changes in both models which are corresponding in
the sense that the changed objects are connected to each other (see Section
4.2.2).
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Figure 6: Analysis results. (+) addition; (-) deletion



4.2.1. Correlation analysis
Both the SA and FT models of a scenario SCi+1 are a result of applying

a sequence of changes to the SA and FT models of scenario SCi. We dis-
tinguish between SA and FT change types, which involve the addition and
removal of entities from the respective meta-model, e.g., component types
(+/-ComponentType), error instances (+/-ErrorInstance), and basic events (+/-
BasicEvent). For each of the 12 evolution scenarios, we counted the number
of applied changes grouped by change type. In total, we consider six di↵er-
ent SA model change types and 14 di↵erent FT model change types. These
results, which form the basis for the further correlation analysis, are listed
in Figure 6(a). Each column comprises the number of how many times the
change type represented by the column has been applied in the respective
scenario. For example, eight component types are added in SC0. The bottom
rows include the total number of applied changes per type over all scenarios
and the number of scenarios in which this change type was applied. Note
that the changes to FT1 and FT2 are merged. In order to quantify the lin-
ear relationship between the changes in the SA and FT models per type, we
computed the well-known Pearson correlation coe�cient rX,Y for each com-
bination of change count vectors for SA change type X =< x0, x2, . . . , x14 >
and FT change type Y =< y0, y2, . . . , y14 > over all scenarios, with xi and
yi representing the number of SA and respectively FT changes of this type
in SCi. A Pearson correlation value rX,Y is in the range between �1 and
1, with �1 and 1 indicating high negative/positive linear relationship, and
0 indicating no such relationship. The computed correlation coe�cients for
the case study are listed in Table 6(a). Note that we will omit all correlation
coe�cients from the further discussion, which involve change types (in either
X or Y ) that occur in less than three scenarios and, thus, too seldomly.

Three clusters of correlation values can be observed in the data: i) �0.44 
rX,Y  �0.16, ii) 0.22  rX,Y  0.48, and iii) 0.61  rX,Y  1.0. The fur-
ther discussion is limited to relationships in the latter group (bold values
in Figure 6(a)), considered to reveal a high (linear) correlation. High lin-
ear correlations can be observed for additions of component types, top-level
component instances, and subcomponent instances with additions of error
types, failure types, failure instances, and intermediate events. The addition
of subcomponent instances also shows high correlations with additions of er-
ror instances, basic events, and gates. High correlations can also be observed
for deletions of subcomponent instances with deletions of error instances and



basic events. The addition of component types, component instances, and
subcomponent instances roughly show similar correlation patterns, in that
they show high correlations with the same set of FT change types. How-
ever, comparing even the pairs of highly correlated change types such as the
addition of component and error types with the vectors of Figure 1, it can
be observed that the number of changes of one type not always equals the
number changes of the other type in the same scenario. The only exception
is the relationship of deletion of subcomponent instances with error instances
and basic events.

4.2.2. Mining Analysis
The mining approach analyses not only whether change types correlate

with each other, it also considers whether the changed objects are connected
to each other and if yes, how. The approach checks for each object in the
software architecture model, whether it was created (denoted as “+”) or
deleted (“-”) in a scenario. For each of those created and deleted objects, it
mines in the models whether the object is connected (directly or indirectly)
via a Trace element to an object in the fault tree model which is either created,
deleted or unchanged (“=”). In other words, we identify those changes which
happened in the same scenario and the changed objects are connected to each
other and were not just coincidently changed in the same scenario.

The mining, i.e., our notion of connectedness, is formalized by a set of
model patterns expressed as Henshin rules (left hand side equals right hand
side) which contain elements of the source and target models being con-
nected by intermediate elements which express the concrete relation between
them. Figure 7 shows the mining pattern for the connection between Com-
ponentType and BasicEvent. In the models of the PPU case study, only
ComponentInstances are connected by trace elements to elements in the error
model, i.e., ComponentType and BasicEvent elements may be indirectly con-
nected. Thus, the pattern specifies that ComponentType and BasicEvent are
linked via a Trace element between their instances (ComponentInstance and
ErrorInstance). Overall, we use 18 di↵erent mining patterns for all possible
combinations of classes and connections.

We call those changes to connected objects corresponding and use csrc,trgt
for the number of corresponding changes in all scenarios for a change type
src in the SA model and a change type trgt in the fault tree model, i.e.,
src refers to a row in Figures 6(a) and 6(b) and trgt refers to a column.
We use nsrc for the number of all changes for a change type src. The cells



Figure 7: Mining pattern for trace elements between ComponentType and BasicEvent

in Table 6(b) contain then the fraction of corresponding changes between
source and target model with respect to all changes in the source model:
fsrc,trgt = csrc,trgt/nsrc. For example, f+CpType,+ErrorType = 0, 17 describes
that 17% of the newly created component types are connected to a newly
created error type, i.e., one which was created in the same scenario.

Furthermore, we also mined for those changes in the scenario where a cre-
ated object (e.g., subcomponent instance +SComponentInstance) is connected
to an existing object (e.g., error instance =ErrorInstance). This enables to
compare whether created objects in the software architecture models are
linked to created, to existing, or no objects in the error model. Similarly,
we mined also for corresponding deletions, e.g., a subcomponent instance
is removed -SComponentInstance and also the connected error instance is re-
moved -ErrorInstance. The case that the error instance remains is shown as
=ErrorInstance.

Only changes of subcomponent instances (+/-SComponentInstance) and ad-
ditions of component types (+CpType) happen more than 10 times in order
to draw some conclusion. We see that created subcomponent instances in the
majority of cases are connected to existing error types. With respect to error
instances and basic events in the fault tree, they are in contrast connected
to newly created objects. The reverse change type, deletions of subcompo-
nent instances, show also the reverse corresponding changes, deleting error
instances and basic events and keeping error types. Created component types
are in more than half of the cases connected to newly created basic events,
but this is due to the fact that component types are also connected to com-
ponent instances.



4.2.3. Results and Discussion
Both the correlation and mining analysis confirm our preliminary results

[30] for this case study that no simple and straightforward co-evolution of
SA and FT models exists that could be automated. However, both mining
approaches could be exploited in a co-evolution framework that includes user
interaction, by prioritizing potential co-evolutions based on the data.

We are aware of major threats to validity concerning our conclusions,
namely i.) the limited statistical significance due to the low number of obser-
vations (conclusion validity), ii.) the fact that all models have been developed
by the same people —while in practice they are developed by di↵erent teams
(internal validity), iii.) the consideration of grouped changes per scenario
(construct validity), as well as the fact that iv.) we investigated only a single
case (external validity). We argue that it is a challenge to find a consistent
model co-evolution case study such as the PPU scenarios used in this paper.
In fact, we are only aware of one other case study on model co-evolution
which is presented by Herrmanndörfer et al. in [43]. However, the study
is on the co-evolution of meta-models and instance models, the co-evolution
of multiple instance models is not addressed. We experienced that it is al-
ready extremely hard to consistently co-evolve the SA and FT models for
this—seemingly small—case study. However, particularly w.r.t. to ii.–iv) we
do not see that these threats have a major impact on our conclusion that
co-evolution cannot be fully automated but requires user interaction.

5. Supporting Co-Evolution

In Section 4, we presented the analysis results and conclude that change
actions between system architecture and fault trees are not straightforward.
For this reason, developers can only be assisted by a recommender system
that o↵ers a set of meaningful transformations, which is rich enough to con-
sistently co-evolve system architecture and fault tree models. Specifications
of such transformations can be integrated into a rule-based framework such as
the CoWolf tool [29] assisting developers in achieving consistent co-evolution
in a step-wise manner.

As described in the following subsections, the creation, identification and
the co-evolution of the relations between two models such as system archi-
tecture and fault trees can be achieved by means of model transformations
incrementally. We use Henshin model transformations in order to capture
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i.) co-evolution actions between SA and FT models, and ii.) evolution ac-
tions in the individual models. In CoWolf, the former are used to support
developers in model synchronization, while the latter provide assistance in
conveniently performing isolated changes in individual models.

We illustrate our concept and basic notions which are used in the re-
mainder of this article in Figure 8. Every version SAi in a history of co-
evolving SAs and FTs has a corresponding version FTi. We denote such
a pair (SAi,FTi) of two corresponding models a couple. These couples are
connected via trace elements that associate elements from di↵erent corre-
sponding models with each other (see Section 3.1.3). A couple (SAi,FTi)
represents a consistent snapshot of our sample system, i.e. SAi and FTi have
been consistently co-evolved in each evolution step of the PPU.

We distinguish two kinds of model transformations: Intra-transformations
and inter-transformations as presented in the following subsections.

5.1. Intra-model Transformations

For every type of model (here SA and FT), there are intra-model transfor-
mations that execute evolution actions internally within this type of model,
i.e. without changing the corresponding model (see vertical transformations
in Figure 8). This implies that every change between two versions of a model
can be partially described by applications of rules from this set of intra-
transformation rules.



Figure 9 demonstrates two examples of SA intra-transformation rules
specified in Henshin (see Section 3.2 for a brief introduction into the Henshin
model transformation language). The first rule in Figure 9(a) specifies the
creation of a new component in an SA model. The rule, called CreateCompo-
nentInstance, gets the names of the component to be created and its desired
type as input parameters. The rule is applicable if such a component type
exists and there is not yet a component having the same name as the one
which is to be created. When being applied, it adds the created component
to the architecture model and sets the desired component type. The second
rule in Figure 9(b), which is more complex than the first one, specifies the
creation of a connection between two components. The rule, called Create-
Connection, gets the names of two components that shall be connected as
well as the names of the ports and the connector to be created as input pa-
rameters. It creates the whole connection, actually a complex model pattern
including in- and out-ports that are to be connected by the connector. Like
most of our intra-model transformation rules, the rule is equipped with a
negative application condition (NAC) in order to preserve internal consis-
tency constraints of a model to which the rule is applied. Similar to the
transformation rule in Figure 9(a), the NAC exposed by the transformation
rule CreateConnection ensures the uniqueness of names.

Note that the change specified by the transformation rule CreateConnec-
tion could be achieved by a sequence of sub-rules, namely the creation of the
required ports followed by the creation of the connector. Both sub-rules, i.e.,
the creation of a component port as well as the creation of a connection be-
tween existing ports, are also included in our set of SA intra-transformation
rules (not presented in this paper). Nevertheless, a compact rule such as
CreateConnection achieves this change in a single step, which demonstrates
our aim of reducing the amount of manual work to achieve consistent model
(co-)evolution.

Internal transformations for FT models have been created in the same
manner. As a result, we have created 42 intra-model transformations for SA
and 57 intra-model transformations for FT.

5.2. Inter-model Transformations

Inter-model transformations (horizontally shown in Figure 8) have been
created to describe co-evolutions. They are used to execute the corresponding
changes on an FT model when an SA model undergoes changes, i.e., to
e↵ectively achieve semi-automated model synchronization through change



(a) Component instance creation

(b) Connection creation

Figure 9: Intra-model transformations for System Architecture



recommendations. Trace elements between couples play the key role in the
identification of the relations and are extensively used by our inter-model
transformations. All inter-model transformation rules include at least one
Trace object representing a connection between an SA and an FT model.
In sum, we have developed 16 inter-model transformation rules describing
possible co-evolution steps of SAs and FTs as presented in Table 2. We can
classify these rules in four categories to which we refer to as consistency,
coupling/connecting, decoupling and propagation, respectively.

Firstly, consistency transformation rules aim at ensuring that if an SA
ComponentInstance has a connection to an ErrorInstance or a FailureInstance,
then an associated BasicEvent or IntermediateEvent is being created. The
other way round is also possible, i.e., a BasicEvent or IntermediateEvent asso-
ciated to an ErrorInstance or FailureInstance having no connection to a Compo-
nentInstance may be deleted. Such rules can support developers in achieving
consistent co-evolution by adding the corresponding element (1-2 in Table 2)
or removing it as reverse transformations (3-4 in Table 2). For instance, the
rule EnsureBasicEvent shown in Figure 10(a) gets a component name and
event id as input. The rule searches for a ComponentInstance with the given
name and checks if there is an ErrorInstance being connected via a Trace ele-
ment. If so, the rule is applicable and creates a BasicEvent with given event
id. Hence, the rule EnsureBasicEvent enables the developer to ensure the
existence of a basic event for each component in the architectural model be-
ing connected to an ErrorInstance but yet lacking a basic event. However, this
cannot be done fully automated since the developer needs to decide in which
fault tree the basic event is relevant and thus shall be added by executing
the transformation rule.

Secondly, coupling/connecting transformation rules aim at creating new
trace objects to relate the corresponding elements between MSA and MFT .
In other words, they specifically add new inter-model relationships to the
models. An example is demonstrated with the rule CreateAssociatedError-
Instance in Figure 10(b). The rule CreateAssociatedErrorInstance basically
builds the relationship for corresponding elements of type ComponentInstance
and ErrorInstance by ensuring that there there is an error type defined for the
ErrorInstance. It creates one ErrorInstance and the Trace between a Compo-
nentInstance and an ErrorInstance at the same time. Coupling/connecting
transformations can i) add new trace objects together with new elements (5-
6 in Table 2) as demonstrated in Figure 10(b), which creates for an existing
ComponentInstance an associated ErrorInstance in the FT model and connects



these two elements with a Trace object, and ii) connect existing elements with
a new Trace object (7-11 in Table 2).

Third, decoupling transformation rules reverse the coupling transforma-
tion functionality. In Figure 10(c), we provide a generic rule to clear a trace
object that does not require a specific name.

Finally, propagation transformation rules aim at implementing various
combinations of inter-model relationships on a SA model. For example, the
transformation PropagateFailureToParentComponent propagates the Failure-
Instance of a ComponentInstance to its parent component ComponentInstance
by applying CreateAssociatedFailureInstance (Rule 6). The transformation
is applicable if there exists a parent ComponentInstance not being connected
to the FailureInstance yet.

Category # Name +
N
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d
e

+
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consistency

addition 1 EnsureBasicEvent 1 2 0 0
addition 2 EnsureIntermediateEvent 1 2 0 0
deletion 3 RemoveConnectedBasicEvent 0 0 1 3
deletion 4 RemoveConnectedIntermediateEvent 0 0 1 3

coupling/connecting

5 CreateAssociatedErrorInstance 2 5 0 0
6 CreateAssociatedFailureInstance 2 5 0 0
7 ConnectPortInstanceWithFailureInstance 1 2 0 0
8 ConnectComponentInstanceWithFailureInstance 1 2 0 0
9 ConnectComponentInstanceWithErrorInstance 1 2 0 0
10 ConnectPortInstanceWithErrorInstance 1 2 0 0
11 ConnectConnectorWithFailureInstance 0 0 1 2

decoupling 12 ClearTraceElement 0 0 1 2

propagation

13 PropagateFailureToParentComponent 1 2 0 0
14 PropagateFailureToConnectedPortFromPort 1 2 0 0
15 PropagateFailureToComponentFromPort 1 2 0 0
16 PropagateErrorToComponentFromPort 1 2 0 0

Table 2: Summary of inter-model Transformations

5.3. Running Example showing Evolution Actions

In Figure 11(a), we demonstrate one evolution step of the PPU system
from scenario SC2 to scenario SC3, where the PPU is evolved by the addition
of a Stamp component. We illustrate some changes in the system architecture
(left) and their impact on the corresponding fault tree (right) for parts of the
models. Here, we focus on one change in the Crane component and the cor-
responding changes in the fault tree when the stamp is added to the system.
A new sensor atPositionStampS is added as a subcomponent of component



(a) Creation of a BasicEvent for the corresponding Compo-
nentInstance

(b) Creation of an ErrorInstance and a corresponding Trace
element

(c) Removing the Trace element

Figure 10: Inter-model Transformations between System Architecture and Fault Trees



Crane. In this specific example, the new component atPositionStampS and
its ports are associated with existing types, i.e. an existing component type
and an existing port type, respectively. Therefore, no new component type
or port type is being created. Concerning the related fault tree, the addi-
tion of the component atPositionStampS leads to the creation of a new error
instance toStampSInductiveError which is connected to component atPosi-
tionStampS by a new trace element. Furthermore, the new error instance
is connected to a new basic event called “Sensor error for position of Stamp
occurs” such that atPositionStampS and the basic event are properly con-
nected to each other. In turn, the new basic event is connected to an existing
OR gate instead of appearing standalone. This gate takes the input events
associated to the sibling components of atPositionStampS in the component
hierarchy, i.e. the events associated to other subcomponents of component
Crane.

In Figure 11(b), we illustrate how the changes of 11(a) can be achieved by
applications of our intra- and inter-model transformations. First, two intra-
model transformations are performed on model SA2 by applying rules Cre-
ateComponent and CreateConnection, referred to as rule applications 1 and
2 Figure 11(b). by applying these rules, we create the new sensor component
and embed it into the SA model. Thereafter, as a response to these changes,
the FT model is being adapted by applying inter-model transformations Cre-
ateAssociatedErrorInstance and EnsureError. Thereby, we create new error
instance being traced to the new component (rule application 3) together
with a new basic event associated to that error instance (rule application
4). Finally, applying the intra-model transformation rule CreateConnection
connecting the new basic event to an existing OR gate in the FT model (rule
application 5) completes the synchronization, thus leading to a consistent
co-evolution step.

As already mentioned in Section 5.1, our rule sets include basic editing
operations as well as more complex transformation rules which cover several
basic editing operations to improve e�ciency. This is also illustrated in our
example of Figure 11(b). Here, the application of the intra-model trans-
formation rule CreateConnection (rule application 2) could be replaced by
a sequence of three rule applications yielding the same result, namely Cre-
atePort, CreatePort, CreateConnector, illustrated as Alternative 2b in Figure
11(b).
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6. Evaluation

The quality of a co-evolution framework such as CoWolf strongly depends
on the quality of the transformation rules being o↵ered to developers as inter-
active editing commands. Thus, we investigate two major quality aspects of
our set of manually defined transformation rules which must be i.) complete
in the sense that every couple (SAi, FTi) can be evolved to (SAi+1, FTi+1)
in a consistent way, and ii.) helpful in the sense that this evolution can be
achieved by a developer with minimal e↵ort, which is also referred to as task
e�ciency in the literature [1].

Research methodology. We choose a quantitative approach in order to assess
these quality aspects. For each evolution step of the PPU case study, i.e., for
each pair of successive evolution scenarios SCi and SCi+1, we calculate model
di↵erences �(SCi, SCi + 1) which are based on our transformation rules
presented in Section 5. A di↵erence �(SCi, SCi+1) provides a specification
of how scenario SCi can be evolved to scenario SCi+1 using transformation
rules available in a dedicated rule set. Thus, we can utilize di↵erence metrics
(see, e.g., [86, 89, 90]) in order to reason about quality aspects i) and ii) of
a transformation rule set.

In our study, we use the SiLift model di↵erencing framework [51], which
has been specifically designed for the comparison of graph-structured models.
In addition to the two input models M1 and M2, which are to be compared
with each other, the di↵erencing engine takes a set R of transformation rules
as additional configuration parameter as input (cf. Figure 12). The output
of the di↵erencing engine, i.e., the di↵erence between M1 and M2, is given as
a sequence of rule applications, each rule is part of the pre-defined set R [54].
We write �R(M1,M2) to refer to a di↵erence which is based on a set R of
transformations rules. Transformation rules must be specified in Henshin.

Figure 12: SiLift model di↵erencing engine: In- and output parameters



Our study design is described in Section 6.1, quality metrics are intro-
duced in Section 6.2. Results are summarized by Section 6.3, and Section
6.4 finally discusses threats to validity.

6.1. Study Design

Pairs of models which are subject to a di↵erence calculation are given by
the evolution steps of the PPU case study. We consider a triple (SAi, FT1i, FT2i),
including the trace elements between SAi and FT1i as well as the trace el-
ements between SAi and FT2i, as a single input model. For each evolution
step, we compute three distinguished kinds of di↵erences which are based on
di↵erent sets of transformation rules. Obviously, one set of transformation
rules is given by our intra- and inter-model transformation rules presented in
Section 5. For brevity, we refer to this set as Inter/Intra. The following two
sets of transformation rules serve as reference rule sets for our evaluation:

• Atomic: Transformation rules in this set provide all atomic change op-
erations on graph-structured models which cannot be split into smaller
operations, i.e. rules to create and delete single nodes and edges of a
graph-structured model.

• Generated : Transformation rules in this set are generated from our
SA/FT meta-models (cf. Figures 1 and 2) using the approach pre-
sented in [55], which is implemented in the SiDi↵ Edit Rule Generator
(SERGe) [71]. As argued in [55], transformation rules generated with
SERGe are similar to the edit operations provided by typical editors
for visual modeling languages.

We refer to the calculated kinds of di↵erences as �Atomic, �Generated and
�Inter/Intra, respectively. We consider these rule sets as the baseline for
evaluating the quality of our intra-/inter-model transformation rules.

6.2. Measures

Completeness. Our set of intra-/inter transformation rules is complete if we
can describe any evolution step based on rules available in this set. To that
end, we check whether all di↵erences �Inter/Intra(SCi, SCi + 1) can be cal-
culated by SiLift. If we can compute a di↵erence for each evolution scenario
of the PPU case study, this serves as strong indicator for the completeness
of our set of intra-/inter transformation rules.



Task e�ciency. In a co-evolution framework which primarily serves as a rec-
ommender system, each transformation rule would be o↵ered to the developer
as an interactive editing command which is executable in a well-defined con-
text. Consequently, the amount of manual work for an evolution step can
be measured by counting the number of editing commands which have to be
executed in order to (co-)evolve SCi to SCi+1. The less editing commands
have to be executed, the more e�cient the semi-automated (co-)evolution.

In our study design, the number of editing commands is represented by the
number of rule applications contained by a di↵erence. We write |�(M1,M2)|
to refer to the number of rule applications contained by �(M1,M2). Let
R1 and R2 be two sets of transformation rules serving as configuration pa-
rameter of the SiLift di↵erencing engine, then the reduction of the number
of rule applications for a di↵erence �R1(M1,M2) compared to a di↵erence
�R2(M1,M2) (with |�R1(M1,M2)|  |�R2(M1,M2)|) can be evaluated by a
function fred as

fred(R1, R2,M1,M2) = 1 � |�R1(M1,M2)|
|�R2(M1,M2)|

(6.1)

Thus, for each evolution step, the reduction of the amount of changes us-
ing intra-/inter-model transformation rules compared to using generic graph
operations can be assessed by fred(Inter/Intra, Atomic, SCi, SCi+1). Com-
pared to the generated transformation rule set, we can quantify the improve-
ment by fred(Inter/Intra,Generated, SCi, SCi+ 1).

6.3. Results

The results of the calculation of the model di↵erences �Atomic, �Generated

and�Inter/Intra for each evolution step SCi!SCi+1 are summarized by Table
3.

The evolution step is shown in column 1. Columns 2 and 3 show the
number of atomic graph operations, i.e., the addition and deletion of nodes
(+/-Node) and edges (+/-Edge) in terms of a graph representation of our
SA/FT models. The total number of atomic graph operations is summa-
rized by column 4. It quantifies the number of editing actions being required
to evolve a scenario SCi to SCi+1 if no specific tool support is provided.
Columns 5 and 6 report about the number of rule applications which are
required to evolve a scenario SCi to SCi+1 using transformation rules gener-
ated by SERGe. Column 5 refers to the rule applications on the SA and FT



models, column 6 quantifies the required change operations in order to evolve
the respective trace elements. Both types of changes are summarized by col-
umn 7. Finally, basic properties of each di↵erence �Inter/Intra(SCi, SCi+1),
namely the number of intra- and inter-model rule applications, are shown by
columns 8 and 9, summarized by column 10.

Completeness: An important result of our evaluation is that every dif-
ference �Inter/Intra(SCi, SCi+ 1) can be calculated based on our intra- and
inter-model transformation rules. This means in turn that any historically
observable evolution step can be expressed by exclusively using transforma-
tion rules available in our defined set of intra- and inter-model transformation
rules. Thus, we can conclude that this set of rules is complete w.r.t. all evo-
lution steps provided by the PPU case study.

Task e�ciency: As already mentioned, we assume here that the number
of changes comprised by a model di↵erence SCi!SCi+1 serves as an indica-
tor for the manual editing e↵ort which is required to achieve the respective
co-evolution step. In other words, the manual e↵ort depends on the edit op-
erations which are available for modifying a model. Improved task e�ciency
by using our co-evolution rules as edit operations compared to conventional
edit operations is thus demonstrated by columns 11 and 12. The reduction
of the number of edit steps compared to evolving SA and FT models using
atomic graph operations is shown by column 11. On average, our intra- and
inter-model rules reduce the number of changes by 84.5% (independently of
the overall size of a di↵erence), which is as a significant reduction of the
amount of work for a developer. Even compared to the generated visual
editor operations, as shown by column 12, our manually defined transforma-
tion rules reduce the amount of required user interactions to realize the PPU
co-evolution by on average 52%. In particular, a detailed inspection of the
columns 9 (Inter) and 6 (Traces) reveals that a considerable portion of the
observed reduction compared to typical editor operations is achieved by our
inter-model transformation rules, which are specifically designed to support
the co-evolution.

To get a better impression of the usefulness of each individual inter-model
transformation rule, we present a detailed distribution of the observable inter-
model transformations over the 11 evolution steps of the PPU in Table 4.
Not surprisingly, none of the inter-model transformations can be observed
for the initial evolution step SC0!SC2 since there is no change on the fault
trees and thus no co-evolution at all. For almost any other evolution step,
we observe a high number of occurrences of the consistency rules EnsureBa-
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SC0!SC2 9 33 42 9 0 9 5 0 5 88,1% 44,4%
SC2!SC3 89 329 418 84 48 132 36 21 57 86,4% 56,8%
SC3!SC4 64 322 386 88 60 148 54 26 80 79,3% 46,0%
SC4!SC4b 122 530 652 144 30 174 65 16 81 87,6% 53,5%
SC4b!SC7 136 581 717 158 36 194 71 13 84 88,3% 56,7%
SC7!SC8 46 167 213 50 30 80 25 15 40 81,2% 50,0%
SC8!SC9 54 188 242 58 30 88 34 15 49 79,8% 44,3%
SC9!SC10 110 421 531 114 72 186 46 36 82 84,6% 55,9%
SC10!SC11 60 218 278 58 54 112 19 26 45 83,8% 59,8%
SC11!SC13 80 325 405 85 36 121 43 13 56 86,2% 53,7%
SC13!SC14 28 103 131 31 12 43 16 5 21 84,0% 51,2%

Avg. 73 292 365 80 37 117 38 17 55 84,5% 52,0%

Table 3: Di↵erence metrics by calculated di↵erence (�Atomic, �Generated, �Inter/Intra)
and evolution step SCi!SCi+1

sicEvent and EnsureIntermediateEvent (see Section 5.2). This means that
these rules are indeed very helpful to support a consistent co-evolution of the
models involved in our case study. Likewise, transformations of type (de-
)coupling/connecting can be observed frequently over the evolution steps. In
most of the evolution scenarios, the PPU is extended by additional features
and thus evolving into a larger system. Therefore, coupling/connecting usu-
ally manifests in the addition of new elements and their connections, see
transformations CreateAssociatedErrorInstance and ConnectComponentIn-
stanceWithFI. Decoupling (ClearTrace) arises sporadically because of chang-
ing some components. Finally, propagation transformations are observable
very rarely, particularly for larger evolution steps whose respective di↵er-
ences comprise many changes (e.g., SC9!SC10). The reason is that for the
PPU case study the majority of errors/failures of sub-components are not
propagated to the parent component in the component hierarchy. Most of
the time, the sub-components of the PPU can handle the error instances (e.g.
sensors) before the errors/failures are propagated to the parent components.

6.4. Threats to Validity

Our conclusions are subject to several threats to validity [88], the major
ones will be discussed in the remainder of this section.
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EnsureBasicEvent (1) 0 4 6 6 1 4 3 10 7 1 1 43
EnsureIntermediateEvent (2) 0 1 0 0 0 1 2 2 1 0 0 7
CreateAssociatedErrorInstance (5) 0 14 10 10 2 7 6 20 15 2 2 88
ConnectComponentInstanceWithFI (8) 0 1 0 0 0 1 4 2 2 0 0 10
ClearTrace (12) 0 0 10 0 10 1 0 0 0 10 2 33
PropagateErrorToComponent (16) 0 0 0 0 0 0 0 0 1 0 0 1
PropagateFailureToComponent (15) 0 1 0 0 0 1 0 2 0 0 0 4

⌃ 0 21 26 16 13 15 15 36 26 13 5

Table 4: Distribution of inter-model transformations over evolution steps SCi!SCi+1

Construct validity: The reduction of the user’s e↵ort in achieving con-
sistent co-evolution is only indirectly addressed by our evaluation, namely
by showing that our transformation rule set indeed can significantly reduce
the number of required editing steps. These editing steps, however, would
be presented to users as sets of potential (partial) recommendations. Users
would have to select the most suitable recommendations from such a set,
some of which would have to be completed by passing concrete arguments to
the underlying rule applications. A di↵erent approach to evaluate the e�-
ciency of the recommendations would be to follow established guidelines for
evaluation recommender systems in both online and o✏ine experiments [78].
However, the results would not only depend on our catalog of operators but
would largely be influenced by the quality of the recommendation system
itself. The latter, i.e., the CoWolf framework which is intended to be con-
figured by our transformation rules, is not a contribution of this paper and
thus needs to be evaluated in a separate context.

Moreover, it is debatable whether the pure number of changes, which are
contained by a di↵erence, reflects the quality of a di↵erence in an adequate
way. However, the domain of comparison and versioning of software models
still lacks a standardized set of quality metrics for model di↵erences, and the
number of changes is a commonly accepted indicator for the understandabil-
ity of a di↵erence [53, 57].

Another threat to construct validity is that we use generated transforma-
tion rules as reference value to quantify the amount of manual work being
reduced by using our manually defined transformation rules. Thus, the re-
duction of manual work compared to sophisticated editors might actually be



smaller. However, inter-model transformations are typically not supported.
External validity: The PPU evolution scenarios and the respective

SA/FT models have been created in a laboratory environment and we have
only studied a single case. Thus, it is questionable whether our rules meet
the requirements of real projects in the same way as they do for the PPU
case study, and we might have missed several transformation rules which
are helpful in other contexts. However, Legat et al. show in [58] that the
evolution scenarios of the case reflect typical evolutions in industrial practice.
A second threat to external validity is that the completeness of inter-/intra-
model transformation rules have only been demonstrated w.r.t. the evolution
steps of the PPU case study. However, due to the infinite number of valid SA
and FT models, a general proof for completeness is hard to achieve. To more
exhaustively evaluate the suitability of our transformation rules for achieving
co-evolution of architectural models and fault trees, we would need to study
another case for which a consistent co-evolution history of these types of
models is readily available. However, to the best of our knowledge, there are
no other data sets where we could evaluate the transformation rules on.

Moreover, it is a largely open question how the general approach would
perform on di↵erent kinds of models from another domain, particularly w.r.t.
the necessary e↵ort in studying and encoding similar inter- and intra-model
transformation rules for this domain. However, domain-independence is not
a claim of this paper, and thus we leave such an evaluation for future work.
According to our experience, the manual e↵ort for creating an extensive cat-
alog of transformations is hard to measure and estimate since it depends on
a multitude of di↵erent factors, such as the expertise level of the developers,
the sizes of meta-models, the degree of logical coupling between inter-related
models, etc. However, we argue that the creation of a catalog of transfor-
mation rules is a one time setup e↵ort while the catalog itself is a highly
re-usable asset.

In conclusion, concerning our objective to provide a general framework
supporting the co-evolution of SA/FT models, we are convinced that our
transformation rule set serves as a valuable foundation which, if needed, can
be adapted and/or extended to project-specific needs.

7. Conclusion

In this paper, we have thoroughly analyzed the co-evolution of architec-
ture models and fault trees for a factory automation system called Pick and



Place Unit as an extension of our previous work [30].
As a major contribution, we provided a set of model transformation rules

for achieving co-evolution of software architecture and fault tree models en-
suring a correct evolution of both models, and demonstrated how to use these
rules for a particular (co-)evolution step of the PPU. Our evaluation of these
rules shows that they support all co-evolutions of the pick&place unit evo-
lution scenarios. Furthermore, the rules significantly reduce the amount of
required model transformation applications to realize the co-evolution com-
pared to the usual visual editing operations and to atomic model changes.
Obviously, although developed in terms of the PPU case study, the intra-
and inter-model transformation rules provided by this paper are case study-
specific but may be used as a basis for consistently co-evolving architectural
models and fault of any other system. We make the all transformation rules,
(meta-)models and analyzed data online available such that they can be im-
plemented as a case study [7].

In our future research, we plan to extend the analysis to di↵erent models
and type of models as well as also to investigate further co-evolution scenarios
for similar systems. We believe that the results presented in this paper can be
generalized, however a careful investigation is needed. Based on the results
of the co-evolution of architecture models and quality evaluation models, the
next step is to provide methods and tools support for e�cient evaluation
of co-evolving quality evaluation models. The goal is to provide continual
verification of the system for each evolution step at design time and at run
time.

The current approach only supports the developer by providing the trans-
formations to evolve and co-evolve software architecture models and fault
trees. However, it does not support the developer which transformation to
use, particularly, which evolution of one model should be applied after a
change in the other model. We plan to use the presented transformations
and the developed tooling to analyze historical co-evolution behavior, i.e.,
the types, order, and applications of transformations, to predict or prioritize
the application of transformations in one model after a change in the other
model. Early positive results evaluating techniques from artificial intelligence
for that purpose encourage us in further working in that direction.
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Appendix A. Detailed Description of PPU Evolution Scenarios

Each description of the scenarios SC0–SC14 starts with a general de-
scription followed by a description of the related changes in the SA and FT
models. Note that our goal is not to perform a complete hazard analysis in
each scenario to assess the safety of the system. We are only interested in the
identification of the relations between the evolution of the di↵erent models.
Figure 5 and Figures A.13–A.15 depict the SA and FT instances summarizing
changes from di↵erent scenarios. For our SA language, a graphical concrete
syntax is used, which is similar to SysML Composite Structure Diagrams.
The component instances are labeled with a combination of identifier and
component type name (e.g., stackS:TactileDigital), as well as a stereotype
indicating the component type meta-class (⌧Sensor�).

SC0 —Initial Situation. In the initial scenario, the PPU consists of a
stack, a crane, and a slide. The stack includes a separator that pushes a WP
to a position from where it is picked up by the crane (using a vacuum). The
crane places the WP at a slide, which serves as the output storage. The PPU
includes nine sensors (all tactile digital): in the stack, one sensor detects the
presence of a WP at the pick up position and two sensors detect whether
the separator is extracted or retracted; in the crane, four sensors detect the
crane position and two sensors detect whether the crane’s cylinder is up or
down. In this scenario, the PPU processes only one kind of WPs (metallic).

Figure 5(a) includes the decomposition of the PPU into three top-level
component instances for stack, crane, and slide (depicted as part of the sorter
introduced in SC10)—with a dedicated component type for each. The stack
and the crane are further decomposed according to the afore-mentioned in-
formation about this scenario, including the software components responsible
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Figure A.13: FT for the hazard that a WP is corrupted (FT2)

for their control. Note that both sensors and the software components share
the same respective type: a type for tactile digital sensors and one for soft-
ware building blocks. Without the loss of generality, we model the software
components to have a common type.

With respect to safety, the FT model for this scenario includes five er-
ror types (software implementation error, sensor error, timing and general
vacuum errors, and external error), three failure types (position failure, tim-
ing failure, exceeded capacity), as well as respective failure (four) and error
(eight) instances for the respective component instances. Figure 5(b) shows
an FT, referred to as FT1, for the hazard that a WP is outside the system.
Failure and error instances are related to component instances by generic
trace elements.

SC2 —Black Plastic WPs. A sensor (inductive digital) is added to the
stack, which—together with the existing tactile digital sensor—allows to dis-
tinguish metallic WPs from black plastic WPs introduced in this scenario.
In the SA model, this leads to an addition of a new component type (for
inductive digital sensors) and a component instance of this type as subcom-
ponent of the stack. With respect to safety, no changes to the failure model



and the FT appear, as the two types of WPs are not handled di↵erently, so
far.

SC3 —Stamp Module Added. A stamp is added, including a mag-
azine, a cylinder, and four sensors (tactile digital). The magazine moves a
WP to/from the stamp position; the cylinder does the actual stamping by
moving down, pressing, and retracting. Two of the sensors are used for the
magazine; the remaining two for the cylinder. An additional tactile digital
sensor is added to the crane in order to detect when it is at the position of the
stamp. Only metallic WPs are stamped. The SA model is changed at two
places. First, a new sensor component instance (existing type) is added to
the crane. Second, a new top-level component instance for the stamp (along
with the addition of a new component type), including component instances
for the software (existing type), magazine (including a new type), cylinder
(existing type), and the four sensors (existing type) are added. With respect
to safety, six error instances (existing error types) for sensors are added: five
for the sensors introduced in this scenario and another for the sensor added
in SC2, which is used now. A failure instance and a corresponding failure
type are added for the event that a wrong WP is stamped. This scenario also
introduces a new hazard: WPs may get corrupted. Therefore, we created a
second FT, referred to as FT2, which includes three basic events—a sensor
error in the stack as well as a sensor and an implementation error in the
stack—and an OR gate leading to an intermediate event for pressing wrong
WPs. FT2 is shown in Figure A.13.

SC4 —Inductive Sensors for Crane Positioning. Each of the five
tactile digital crane positioning sensors are replaced by inductive digital sen-
sors, which are more robust against pollution. In the SA model, this changes
the component type of the component instances for the crane sensors. With
respect to safety, new five basic events are replaced by previous ones which
correspond to added and deleted sensors in the crane respectively in FT1
(same for error instances). FT2 remains unchanged.

SC4b —Increase Reliability of Crane Positioning. As a variant of
SC4 with redundancy being introduced, the new inductive sensors are added
but the existing tactile sensors remain (being spatially shifted). In the SA
model, this scenario leads to the addition of five sensors as subcomponents
of the crane (component instances with existing component type). With
respect to safety, five error instances (existing type) are added to the failure
model for the new sensors. In FT1, new basic events are added for the sensor
errors. Five AND gates (G3–7 in Figure 5(b)) are added, each having two



basic events as input and leading to the already-existing OR gate (G8). Note
that the following scenarios are not based on this one but on SC4.

SC7—Additional White WPs. In order to support newly introduced
white WPs, a new optical digital sensor is added to the stack. White WPs
are stamped. In the SA model, the new sensor is added as a new component
instance of the stack, including a new type for the optical digital sensor. The
controller logics of the stack is changed to incorporate the kind of WPs. With
respect to safety, a new error instance (existing error type) is introduced for
the new sensor. A basic event for the sensor error is added to FT2 as input
to an existing intermediate event as output of an existing OR gate.

SC8—Di↵erent Pressure Profiles. This scenario introduces two ad-
ditional components to the stamp, in order to support stamping with di↵er-
ent pressure profiles: a proportional valve and an analogue pressure sensor.
White WPs are stamped with less pressure than metallic WPs. Changes to
the SA model are the addition of subcomponent instances (proportional valve
and analogue pressure sensor) to the stamp (including types) and changes
to the stamp’s controller logic (software). In the failure model, new error
instances are added for the stamp’s controller (existing error type), as well
as for errors of the valve (new error type for actuator errors) and the sensor
(existing error type). A new failure instance (existing type) is added for the
event that too much pressure is put to white WPs. In FT2, four new ba-
sic events are added: two for sensor errors (the stack’s WP sensor and the
stamp’s pressure sensor), and others for errors in the valve and the stamp’s
controller logic. These new basic events lead to a new intermediate event
(referring to the created failure instance) via a new OR gate.

SC9—Installation of Sorter. A conveyor is added to the PPU, which
uses a belt to transport WPs to the slide—now located at the end of the belt.
Conveyor and slide are now referred to as the sorter. Changes to the SA
model are the creation of a new top-level component for the sorter, including
the conveyor and the slide—which previously was a top-level component—as
subcomponents. With respect to safety, an error type for the belt material
corruption and two corresponding error instances for the belt to become
slack or time-worn, respectively, are added. One failure instance along with
a new failure type for speed failures of the belt is added: belt too fast. Basic
events for each new error instance, an intermediate event for the new failure
instance, and two OR gates (G1, G12) are added to FT1.

SC10—Additional Slides and Pushers. Two additional slides are
added to the sorter at both sides of the conveyor’s belt to increase the PPU’s



output storage capacity. Pushers are pushing the WPs into the slides. Two
optical digital sensors are used to detect WPs. The SA model is changed
by adding two additional slides, the two pushers, and the two sensors as
subcomponent instances (new type for the pushers) of the sorter component.
With respect to safety, two error instances of existing type (external cause
for exceeded slide capacity, sensor error for WP detection), and a failure
instance of existing type (timing failure for the pushers) are added for both
slides. Also for both slides, FT1 is extended by two intermediate events
referring to the new failure instances, as a result of two OR-connected (new
Gates G9, G10) occurrences of the basic events.

SC11—Specific Order of Work Pieces. To sort the WPs in a specific
order, two inductive sensors are installed at the slides on both sides of the belt
to detect the kind of work pieces. In this case, the software orders white,
metal, and black WPs respectively. The SA model is changed by adding
two inductive sensors to the sorter component. With respect to safety, the
addition of the new sensors leads to the creation of four basic events with new
error instances. These basic events lead to a new intermediate event together
with dependent three basic events regarding the belt. This eventually causes
a creation of a failure instance associated to a new intermediate event. Finally
an OR gate (G14) is added to operate the given basic events as an output
of the above intermediate event. The SA and FT changes for this and the
following scenarios are included in Figures A.14 and A.15.

SC13—Potentiometer at the Crane. The crane’s five inductive dig-
ital positioning sensors are replaced by a single potentiometer to increase
the accuracy and to avoid spending cables and terminal blocks. In the SA
model, the five component instances for the positioning sensors are removed
and the potentiometer is added as a new component instance (along with an
introduction of the type). With respect to safety, the error instances, basic
events, and the gate for the removed sensors (FT1) are removed. For the
potentiometer, a new error instance (existing type) is added to the failure
model. To FT1, a corresponding basic event is added as replacement for the
OR gate G8 and the connected basic events.

SC14—Incremental Encoder at the Crane. The crane’s potentiome-
ter is replaced by an incremental encoder to increase the resistance to elec-
tromagnetic influences. Changes to the SA model are the addition of the
new component type for the incremental encoder and its use for the posi-
tioning sensor (potentiometer introduced in SC13). With respect to safety,
the basic event and error instance corresponding to the incremental encoder
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is replaced by the new basic event and error instance corresponding to the
potentiometer in FT1.
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Abstract. Safety-critical systems are subject to rigorous safety analy-
ses, e.g., hazard analyses. Fault trees are a deductive technique to derive
the combination of faults which cause a hazard. There is a tight rela-
tionship between fault trees and system architecture as the components
contain the faults and the component structure influences the fault com-
binations. In this paper, we describe an explorative case study on mul-
tiple evolution scenarios of a factory automation system. We report on
the evolution steps on the system architecture models and fault trees
and how the evolution steps in the di↵erent models relate to each other.

1 Introduction

Safety-critical systems require a rigorous assessment of the system’s safety. Dif-
ferent techniques like Fault Tree Analysis (FTA) and Failure Mode and E↵ects
Analysis (FMEA) are used to analyze the relations between failures of system
parts and hazards, which are situations that might lead to accidents which harm
life, health, property or the environment.

The outcome of hazard analysis techniques like FTA and FMEA are the
corresponding safety evaluation models, e.g., fault trees, as well as improved
and revised architectural and behavioral models. However, all these models are
not totally independent but rather have a tight relation, e.g., the failures of
an architectural component must be considered in the fault tree. Hence, the
consistency of these models is of utmost importance since inconsistencies would
lead to an incorrect safety evaluation which can lead to severe consequences.
System evolution makes the consistency problem worse as not only at one point
in time consistency between the models must be ensured but also after each
evolution step as also noted as challenge for evolution in [7].

The overall goal of our work is to support the co-evolution of system architec-
ture and fault tree models to ensure the consistency between those two models.
We envision a model transformation based approach where incremental model
transformations are used to evolve one model and co-evolve another model. Ex-
isting approaches (e.g., [3,5,6]), which consider both the system architecture and
fault tree models, typically use manually or quasi-automatic generation of fault
trees from architectural models with fault tree specific annotations. This only
shifts the consistency problem inside a single model but does not solve it.

As a first step in this research, we analyzed a case study for the evolution
of a factory automation system to identify the possible model changes, the rela-
tions between elements of the two models and the changes in the two models, as
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well as where input from the user is required. The example is commonly used in
the German priority program “Design for Future — Managed Software Evolu-
tion” and addresses a pick and place unit (PPU). The evolution scenarios on the
architecture have been described in [4]. Factory automation systems are an in-
teresting case for evolution since they contain mechanical parts, electrical parts,
and software parts. All these parts can be evolved individually or in combination.
Additionally, these systems are also typically safety-critical.

We developed architecture and fault tree models for a safety-relevant subset
of the PPU evolution scenarios. This enabled us to study the evolution of the
individual models as well as to study the relation between the individual evolu-
tion of the two models in order to understand which changes in one model a↵ect
changes in another model.

The models and detailed model changes for the selected evolution changes
are the first contribution of this paper which enables other researchers to study
co-evolution as well. The raw data is made available to the general public at [2].
The second contribution is the identification and generalization of the relations
between the model changes as initial requirements for an approach to support
the developer in the co-evolution of architecture and fault tree models.

The next section introduces the two modeling languages for software ar-
chitecture and fault trees as well as the evolution scenarios of the PPU case
system—including the individual evolution of the two models. Based on that,
Section 3 describes the identified general evolution changes and the identified
relations between the evolutions of the di↵erent models. Section 4 draws the
conclusions and outlines future work.

2 Modeling Languages and PPU Case Study System

Section 2.1 introduces the two modeling languages used to express the two
types of co-evolving models: system architecture and fault trees. Section 2.2 de-
scribes the pick and place unit (PPU) case study system, including the manually
created—and individually evolving—models.

2.1 Modeling Languages

Due to space limitations, we provide only textual descriptions of the core con-
cepts of both languages, referred to as SA and FT. In both cases, well-known
concepts from architecture description languages (ADLs) [8] and fault tree mod-
eling [9], respectively, are used.

The core entities provided by our software architecture (SA) language for
describing system architectures are components, ports, and connectors. SA dis-
tinguishes between type and instance level for these elements. Component types
can be further distinguished between hardware (electronic and mechanical) and
software. Components may be composite structures of other interconnected com-
ponents. SA also includes concepts for ports and connectors, which are omitted
in this paper due to space limitations.
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Our second modeling language FT allows the definition of a failure model
and a set of corresponding fault trees. A failure model includes the definition of
error types and failure types and their instances based on [1]. To exemplify the
di↵erence between instance- and type-level, a sensor error is an error type, while
the error of a specific sensor is an error instance. The core (abstract) entities
of a fault tree are events (hazard as top event, basic event relating to an error
instance, and intermediate events) as well as boolean gates.

2.2 Case Study: Evolution Scenarios

The case study system is a laboratory plant, called pick and place unit (PPU).
The PPU mimics an industrial plant by moving so-called work pieces (WPs)
between di↵erent working positions where they are stored or processed. Out of
the 14 evolution scenarios that have been defined for the PPU [4], we selected
a subset of eleven scenarios (0, 2, 3, 4, 4b, 7, 8, 9, 10, 13, 14) for our study
that include system changes a↵ecting the system’s safety properties. For each
scenario, we manually created SA and FT models. In this section, we will describe
the di↵erent scenarios—limited to the safety-relevant aspects—and the changes
they implied to the SA and FT models. Each scenario description starts with
a general description followed by a description of the related changes in the SA
and FT models. Note that our goal is not to perform a complete hazard analysis
in each scenario to assess the safety of the system. We are only interested in
the identification of the relations between the evolution of the di↵erent models.
Figure 1 depicts the SA and FT instances as a combination of the scenarios
which we will present in detail in the following. Due to space restrictions, we do
not present the scenarios 13 and 14. For our SA language, a graphical concrete
syntax is used, which is similar to UML2 composite structures. The component
instances are labeled with a combination of identifier and component type name
(e.g., stackS:TactileDigital), as well as a stereotype indicating the component
type meta-class (⌧Sensor�). For the FT model, we use the usual notation [9].

SC0 —Initial Situation In the initial scenario, the PPU consists of a stack,
a crane, and a slide. The stack includes a separator that pushes a WP to a
position from where it is picked up by the crane (using a vacuum). The crane
places the WP at a slide, which serves as the output storage. The PPU includes
nine sensors (all tactile digital): in the stack, one sensor detects the presence of
a WP at the pick up position and two sensors detect whether the separator is
extracted or retracted; in the crane, four sensors detect the crane position and
two sensors detect whether the crane’s cylinder is up or down. In this scenario,
the PPU processes only one kind of WPs (metallic).

Figure 1(a) includes the decomposition of the PPU into three top-level com-
ponent instances for stack, crane, and slide (depicted as part of the sorter in-
troduced in SC10)—with a dedicated component type for each. The stack and
the crane are further decomposed according to the afore-mentioned information
about this scenario, including the software components responsible for their con-
trol. Note that both the sensors and the software components share the same
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Fig. 1. SA and FT models for the PPU scenarios SC0–10.
(Legend for change operations: + addition, - deletion, # replacement by other imple-
mentation, ⇠ new version of implementation, && AND, �1 OR.)

Proceedings of NiM-ALP 2013 35



respective type for simpler presentation: a type for tactile digital sensors and
one for software building blocks.

With respect to safety, the FT model for this scenario includes five error types
(software error, sensor error, timing and general vacuum errors, and external
error), three failure types (position failure, timing failure, exceeded capacity),
as well as respective failure (four) and error (eight) instances for the respective
component instances. Figure 1(b) shows an FT, referred to as FT1, for the hazard
that a WP gets outside the system.

SC2 —Black Plastic WPs A sensor (inductive digital) is added to the stack,
which—together with the existing tactile digital sensor—allows to distinguish
metallic WPs from black plastic WPs introduced in this scenario. In the SA
model, this leads to an addition of a new component type (for inductive digital
sensors) and a component instance of this type as subcomponent of the stack.
With respect to safety, no changes to the failure model and the FT appear, as
the two types of WPs are not handled di↵erently, so far.

SC3 —Stamp Module Added A stamp is added, including a magazine, a
cylinder, and four sensors (tactile digital). The magazine moves a WP to/from
the stamp position; the cylinder does the actual stamping by moving down,
pressing, and retracting. Two of the sensors are used for the magazine; the
remaining two for the cylinder. An additional tactile digital sensor is added
to the crane in order to detect when it is at the position of the stamp. Only
metallic WPs are stamped. The SA model is changed at two places. First, a new
sensor component instance (existing type) is added to the crane. Second, a new
top-level component instance for the stamp (along with the addition of a new
component type), including component instances for the software (existing type),
magazine (including a new type), cylinder (existing type), and the four sensors
(existing type) are added. With respect to safety, six error instances (existing
error types) for sensors are added: five for the sensors introduced in this scenario
and another for the sensor added in SC2, which is used now. A failure instance
and a corresponding failure type are added for the event that a wrong WP is
stamped. This scenario also introduces a new hazard: WPs may get corrupted.
Therefore, we created a second FT, referred to as FT2, which includes three basic
events—a sensor error in the stack as well as a sensor and an implementation
error in the stack—and an OR gate leading to an intermediate event for pressing
wrong WPs. A diagram for FT2 is not included due to space limitations.

SC4 —Inductive Sensors for Crane Positioning Each of the five tactile
digital crane positioning sensors are replaced by inductive digital sensors, which
are more robust against pollution. In the SA model, this changes the component
type of the component instances for the crane sensors. With respect to safety,
the probability of the five basic events in FT1 that one of the crane sensors fails
is decreased. FT2 remains unchanged.

SC4b —Increase Reliability of Crane Positioning As a variant of SC4
with redundancy being introduced, the new inductive sensors are added but the
existing sensors remain (being spatially shifted). In the SA model, this scenario
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leads to the addition of five sensors as subcomponents of the crane (component
instances with existing component type). With respect to safety, five error in-
stances (existing type) are added to the failure model for the new sensors. In
FT1, new basic events are added for the sensor errors. Five AND gates (G3–7 in
Figure 1(b)) are added, each having two basic events as input and leading to the
already-existing OR gate (G8). Note that the following scenarios are not based
on this one but on SC4.

SC7—Additional White WPs In order to support newly introduced white
WPs, a new optical digital sensor is added to the stack. White WPs are stamped.
In the SA model, the new sensor is added as a new component instance of the
stack, including a new type for the optical digital sensor. The controller logics of
the stack is changed to incorporate the kind of WPs. With respect to safety, a
new error instance (existing error type) is introduced for the new sensor. A basic
event for the sensor error is added to FT2 as input to an existing intermediate
event as output of an existing OR gate.

SC8—Di↵erent Pressure Profiles This scenario introduces two additional
components to the stamp, in order to support stamping with di↵erent pressure
profiles: a proportional valve and an analogue pressure sensor. White WPs are
stamped with less pressure than metallic WPs. Changes to the SA model are the
addition of subcomponent instances (proportional valve and analogue pressure
sensor) to the stamp (including types) and changes to the stamp’s controller
logic (software). In the failure model, new error instances are added for the
stamp’s controller (existing error type), as well as for errors of the valve (new
error type for actuator errors) and the sensor (existing error type). A new failure
instance (existing type) is added for the event that too much pressure is put to
white WPs. In FT2, four new basic events are added: two for sensor errors (the
stack’s WP sensor and the stamp’s pressure sensor), and others for errors in the
valve and the stamp’s controller logic. These new basic events lead to a new
intermediate event (referring to the created failure instance) via a new OR gate.

SC9—Installation of Sorter A conveyor is added to the PPU, which uses a
belt to transport WPs to the slide—now located at the end of the belt. Con-
veyor and slide are now referred to as the sorter. Changes to the SA model are
the creation of a new top-level component for the sorter, including the conveyor
and the slide—which previously was a top-level component—as subcomponents.
With respect to safety, an error type for the belt material corruption and two
corresponding error instances for the belt to become slack or time-worn, respec-
tively, are added. One failure instance along with a new failure type for speed
failures of the belt is added: belt too fast. Basic events for each new error in-
stance, an intermediate event for the new failure instance, and two OR gates
(G1, G12) are added to FT1.

SC10—Additional Slides and Pushers Two additional slides are added to
the sorter at both sides of the conveyor’s belt to increase the PPU’s output stor-
age capacity. Pushers are pushing the WPs into the slides. Two optical digital
sensors are used to detect WPs. The SA model is changed by adding two addi-
tional slides, the two pushers, and the two sensors as subcomponent instances
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(new type for the pushers) of the sorter component. With respect to safety, two
error instances of existing type (external cause for exceeded slide capacity, sensor
error for WP detection), and a failure instance of existing type (timing failure
for the pushers) are added for both sides. Also for both sides, FT1 is extended
by two intermediate events referring to the new failure instances, as a result of
two OR-connected (new Gates G9, G10) occurrences of the basic events.

3 Identified Relations Between Model Changes

In order to understand the relations between the changes in one model and
changes in the other models presented in the previous section, we summarized
the changes in Table 1. The table shows the individual changes of the architecture
model in the rows and the changes on the failure model and the fault trees in
the columns. The cells contain the scenario IDs. This means that in the given
scenario a certain change in the architecture coincides with a certain change in
the failure model and fault tree. We do not include ports and connections for
simplicity and exclude the initial scenario.
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Table 1. Mapping of scenarios and model changes

We made a couple of general observations from the results of the case study
and building the aforementioned table (and its detailed version [2]). The creation
of error instances in the components eventually leads to a basic event in the fault
tree. However, this can be in the same scenario (SC8) or in di↵erent evolution sce-
narios (SC2 and SC3). Sometimes, changes in one model do not coincidence with
changes in another model. The addition of components often triggers changes
of failure model and fault trees only when the component is actually used in
the system. In some scenarios, individual changes in the architecture results in
individual changes in the fault trees. However, in other scenarios, only a set of
changes in the architecture is related to a set of changes in the fault tree. There
are changes in one model where the user needs to decide on the correct changes
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in another model. For example, the addition of the pusher in SC10 triggers the
addition of basic events related to errors of the belt which has not been changed
in that scenario.

Hence, the main result of the case study is that there is no simple, straight-
forward co-evolution of system architecture and fault tree models that could be
fully automated for all possible di↵erent co-evolution steps contained in the case
study. Instead, user interaction is required for some of them, e.g., when to add
a basic event to the fault tree for a new component as described above.

4 Conclusion and Future Work

We presented the results of a case study in the co-evolution of system architecture
and fault trees based on the evolution scenarios presented in [4]. For a subset
of the evolution scenarios, we, first, built fault trees for two exemplary hazards
and, second, identified evolution changes in both architecture and fault tree
models including in which way the evolution changes depend on each other as
co-evolutions.

Threats to validity of our results are (1) the limits of our metamodel and
instance models, (2) the models were built by ourselves, (3) the selected subset
of scenarios and hazards, and (4) the result is based on only one case study.

Based on the identified evolution changes, we currently work on a tool-
supported co-evolution approach that supports the developer if one model
evolves to choose a consistent co-evolution of the other model.
Acknowledgements: This work was partially supported by the DFG (Ger-
man Research Foundation) under the Priority Programme SPP1593: Design For
Future - Managed Software Evolution.
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Abstract. Iterative development and changing requirements lead to
continuously changing models. In particular, this leads to the problem of
consistently co-evolving di↵erent views of a model-based system. When-
ever one model undergoes changes, related models should evolve with
respect to this change. Domain engineers are faced with the huge chal-
lenge to find proper co-evolution rules which can be finally used to assist
developers in the co-evolution process. In this paper, we propose an ap-
proach to learn about co-evolution steps from a given co-evolution history
using an extensive analysis framework. We describe our methodology and
provide the results of a case study on the developed tool support.

Keywords: Model-driven engineering, model evolution, multi-view
modeling, model co-evolution, model synchronization, model di↵erencing

1 Introduction

The multi-view paradigm is a well-established methodology to manage complex-
ity in the construction of large-scale software systems. In Model-driven Engineer-
ing (MDE), this paradigm leads to the concept of multi-view modeling; di↵erent
modeling notations are used to describe di↵erent aspects such as structure, be-
havior, performance, reliability etc. of a system.

Iterative development and changing requirements lead to continuously chang-
ing models. Consequently, this entails the special challenge to consistently co-
evolve di↵erent views of a system [12]. In practice, this challenge usually appears
as a synchronization problem; di↵erent (sub-)models, each of them representing
a dedicated view on the system, are usually edited independently of each other.
This occurs if they are assigned to di↵erent developers or due to the fact that a
developer concentrates on a single aspect at a specific point of time [13]. Thus,
changes to one model must be propagated to all related models in order to keep
the views synchronized and to avoid inconsistencies.

We assume a setting as shown by the bottom-left part of Figure 1, the termi-
nology is partly adopted from related work on model synchronization and model
co-evolution [5, 6]: A source model Msrc,n is related to a target model Mtgt,n

via traces. A source model is the model that undergoes changes and a target
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Fig. 1. Overview of the overall co-evolution process

model is the model to which these changes have to be propagated. Finally, a
trace is a relationship between elements in these two di↵erent models. Forward
propagation (fwPrpg) denotes the migration of the target model in response to
changes occurring in the source model. Backward propagation (bwPrpg) denotes
the migration of the source model in response to changes occurring in the tar-
get model. We refer to both kinds of propagations as co-evolution steps. From
a technical point of view, co-evolution steps can be (semi-)automated via bidi-
rectional model transformations. We call the transformation rules from which
propagation rules can be derived as co-evolution rules.

However, due to the multitude of di↵erent modeling notations, the manual
specification of co-evolution rules is a tedious and challenging task. Domain
engineers, who have to find proper co-evolution rules, are faced with two essential
questions: (1) Do certain changes on a source model correlate with changes on
the target model? (2) If so, how are the changes coupled with each other? There
are several domains for which no simple and straightforward co-evolution exists.
The only viable solution is to pre-define possible co-evolution rules which can be
o↵ered to developers as possible options. For instance, this is the case for software
architecture and quality of service models [4]. In Section 2, we introduce software
architecture models and state charts as another example of co-evolving models
which demonstrates the aforementioned research questions. We use the same
example to serve as a running example throughout the paper.

This paper reports on our ongoing work on the semi-automated co-evolution
of models of arbitrary source and target domains. The general process is illus-
trated by Figure 1. We propose to observe the co-evolution history in order to
learn about developer decisions and to finally predict the co-evolution steps with
a certain degree of probability. The more evolution steps are analyzed, the more
accurate prediction results are expected. The contribution of this paper is the co-
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evolution analysis framework which serves as a foundation for this co-evolution
process. The analysis results can be used to generate co-evolution rules for a rec-
ommender system to interactively support model co-evolution. We describe our
approach in Section 3. Tool support and early evaluation results which demon-
strate the feasibility of our approach are briefly discussed in Section 4. Related
work is analyzed in Section 5. We draw some conclusions and give an outlook
on future work in Section 6.

2 Co-Evolution of Multi-View Models

Component diagrams and state charts are widely used notations to model struc-
ture and behavior in component-based software engineering. Intuitively, there
are several relations between model elements of both views. For example, every
state usually has a relation to a component, not necessarily the other way round.
Transitions between states somehow reflect the interfaces and connections of the
corresponding components in the component diagram. The hierarchy of compos-
ite states is expected to correspond to the hierarchical structure of components
and their respective sub-components. Despite those rather intuitive relationships,
consistently co-evolving both views is not a straight forward process, which is
illustrated by the following example.

Reservation

Book Room Pay the billCheck Room
[Available/Yes]

[Available/No]

Cancel

Customer

Reservation

Payment Booking

Cancellation

Trace

Trace

Trace

Trace

1

2

3

4
5

6 ?

Fig. 2. Sample hotel reservation system modeled from two di↵erent viewpoints

Figure 2 shows a simple hotel reservation system modeled from two di↵er-
ent viewpoints. The initial version of the system architecture consists of three
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components, namely Customer, Booking and Payment. Relations between corre-
sponding states and components are explicitly given by trace links. The system
evolves at some point of time because it requires a new function to cancel a
reservation process. In general, we assume that models are edited by means of
a set of language-specific edit operations. An edit step invokes an edit operation
and supplies appropriate actual parameters, which are also referred to as argu-
ments. In our example, the revised version of the component model is obtained
in three edit steps, namely the creation of the component Cancellation and two
connectors. The new component and its connections to other components are
highlighted in Figure 2 by doubled lines.

State chart elements printed in doubled lines indicate the developer’s inten-
tion of co-evolution steps in response to the changes in the component diagram
(1,2). We discuss several additional co-evolution steps which are possible on the
state chart (Mtgt) in response to the changes in the component diagram (Msrc).
Note that these co-evolution steps are only assumptions which are based on
domain knowledge, they are not meant to be a result of an empirical analysis.

Elements printed in dotted lines represent expected co-evolution steps which
are, however, not intended by the user (3,4,5). Finally, a dotted line with spiral
indicates an unexpected co-evolution step which is nonetheless intended by the
user (6). We do not claim the set of possible options (1)-(6) to be complete.
Nevertheless, it demonstrates the huge challenge of predicting the proper co-
evolution steps:

– As the component Cancellation is added as a sub-component of reservation,
a new state called Cancel is expected to be created as a sub-state of the
corresponding composite state Reservation.

– The creation of transition (1) is expected due to the creation of port and
interface relations of the corresponding components in the component model.

– Although there is no explicit relation between the components Cancellation
and Customer, the creation of transition (2) is expected. Because the newly
created relation between the composite component Reservation and the top-
level component Customer, as a result of the creation of Cancellation. How-
ever, the new component may lead to an interaction between the components
Booking and Customer indirectly via interfaces as well, therefore we should
also consider the transition (3) with a small expectation.

– The required information for the proposed transitions (4) and (5) cannot be
gathered from the component diagram. However, taking general state chart
semantics into account, they can be presented to the developer as a possible
option.

– Finally, we point out transition (6). The developer wants to create a loop
between the states Book Room and Cancel which cannot be clearly antici-
pated from the component diagram since we observe only one direction for
communication. Nonetheless, this option can be o↵ered to the developer with
a low probability.

We can conclude that each edit step on the component model may lead to
many arbitrary co-evolution steps on the state chart. Some forward propagations
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can be expected with a high probability based on the changes in the component
diagram, others can only be o↵ered as a set of possible choices.

3 Co-Evolution Analysis Framework

In Section 2, we have demonstrated a running example as a motivation of our
analysis framework. We have presented possible co-evolution steps and observed
that there are highly expected, less expected and unexpected changes for state
charts when the component diagram evolves.

To study such changes and their relations, our co-evolution analysis frame-
work takes a co-evolution history as illustrated by Figure 1 as input. Each pair
of successive versions i ! i + 1 from the given history is referred to as evolution

scenario evi�i+1. We assume that the co-evolution history includes consistent
views for every evolution scenario. We further assume a model di↵erencing en-
gine to be available, which, given a set of possible edit operations for instances
of a meta-model MM and successive model versions Mi and Mi+1, calculates a
di↵erence di↵(Mi, Mi+1). A di↵erence di↵(Mi, Mi+1) is defined to be a partially
ordered set of edit steps s1 . . . sk. We finally o↵er two kinds of analysis func-
tions; the correlation analysis is described in Section 3.1, the additional coupling

analysis is presented in Section 3.2.

3.1 Correlation Analysis

We use the well-known Pearson correlation coe�cient to assess the dependency
between edit operations which are applicable to the source and target models.
The basic processing steps of our correlation analysis are shown by Figure 3.
For each evolution scenario evi�i+1 of the co-evolution history, we first compute
the di↵erences di↵(Msrc,i,Msrc,i+1) and di↵(Mtgt,i,Mtgt,i+1). Subsequently, we
count the edit steps contained by each of the obtained di↵erences and group
them by evolution scenarios and edit operations invoked by the respective edit
steps. The sets of edit operations, which are available for instances of MMsrc

and MMtgt, are given as additional input parameters of the correlation analysis.
Based on the calculated di↵erences, we basically construct two matrices. For

source model changes, we construct an e-�-s matrix where e denotes the number
of evolution scenarios in the history (i.e., e = n�1), s denotes the number of edit
operations available for instances of MMsrc. A variable ai,j (i � {1, ..., e}, j �
{1, ..., s}) represents the number of edit steps of type j (i.e. edit steps invoking
edit operations represented by j, e.g. createComponent in our running example)
in evolution scenario i. Analogously, an e-�-t matrix is being constructed for
target model changes, where t denotes the number of edit operations available
for instances of MMtgt.

Let X = �x1, x2, ..., xe� be a column vector of the e-�-s matrix, and Y =
�y1, y2, ..., ye� be a column vector of the e-�-t matrix. Then we can compute the
Pearson correlation coe�cient rX,Y for each combination of column vectors X
and Y in order to quantify the linear relationship between edit operations that
have been applied to the source and target models.
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Fig. 3. Correlation analysis: basic proceeding, input and configuration parameter

3.2 Coupling Analysis

The correlation analysis has the advantage that it only requires the source and
target models of each evolution scenario evi�i+1. Thus, this approach can also
be applied to study the co-evolution history in cases where no explicit trace
links between the observed source and target model exist. However, a correla-
tion between edit operations does not imply that the respective edit steps are
actually coupled. In other words, they can have a dependency by coincidence
such that none of the involved arguments are actually related by a trace. Hence,
we also provide a second analysis function which is capable of identifying coupled

changes. Such an analysis can provide knowledge about user’s modeling inten-
tions enhancing correlation analysis results, for example learning of the loop
intention by the user, as provided in Figure 2 with transition (6).

Fig. 4. Coupling analysis: basic proceeding, input and configuration parameter

In general, a coupled change identifies a pair of edit steps which have hap-
pened in the same evolution scenario. It also identifies the changed model ele-
ments which are connected (either directly or indirectly) to each other and were
not just coincidentally changed in the same evolution scenario. We assume here
that trace links identify related model elements of the source and target model.
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These are, together with the model di↵erences for each evolution scenario, pro-
vided as additional input parameters of the coupling analysis (see Figure 4).

Let args(s) be the set of arguments of an edit step s. Basically, a pair of edit
steps (ssrc, stgt) is considered to be a coupled change, if we can find a pair of
arguments (asrc, atgt), with asrc � args(ssrc) and atgt � args(stgt), which are
connected via a trace link.
Additionally, domain-specific trace impact

Trace

Trace

cc st

Fig. 5. Example of a trace impact
pattern

patterns can be specified as optional inputs of
the coupling analysis. These patterns allow
to extend the search for coupled edit steps
to the “neighborhood” of elements which are
directly connected by a trace link. Consider
for instance our running example shown in
Figure 2. Here, trace links are only provided
for related states and components. However,
component connectors and state transitions
are also to be considered as related if the connected components/states are re-
lated. This can be specified by a trace impact pattern as shown in Figure 5, i.e.
the component connector labelled as cc and the state transition labelled as st
are implicitly related. Consequently, a pair of edit steps modifying occurrences
of cc and st, respectively, are to be considered as coupled.

Coupled changes are summarized over all evolution scenarios of the history
as follows: We construct a s-�-t matrix where s denotes the number of edit
operations available for instances of MMsrc and t denotes the number of edit
operations available for instances of MMtgt. A variable ai,j (i � {1, ..., s}, j �
{1, ..., t}) is computed as the fraction of coupled edit steps of types i and j (i.e.
edit steps invoking edit operations represented by i and j, respectively) with
respect to all edit steps of type i being observed in the source model history.

4 Tool Support

We have prototypically implemented the analysis framework proposed in Sec-
tion 3 on the widely used Eclipse Modeling Framework (EMF) and the model
di↵erencing engine SiLift [8, 9]. It is made available to the general public at the
SiLift website1 in order to enable other researchers to study the co-evolution of
any EMF-based models.

Adaption of the generic framework. In order to adapt the generic framework to
new modeling languages, i.e., to adapt it to a given source and target domain,
one has to configure the SiLift di↵erencing tool chain. Primarily, suitable edit
operations for the source and target domain have to be provided. In SiLift, we
use the model transformation language and system Henshin [1] to implement
edit operations as declarative transformation rules, to which we refer to as edit

1 http://pi.informatik.uni-siegen.de/Projekte/SiLift/coevolution.php
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rules. Domain engineers can make use of the EMF-based meta-tool SERGe (SiD-
i↵ Edit Rule Generator) [10] in order to generate basic edit rules, which can be
derived from MMsrc and MMtgt, respectively. Basic edit rules can be comple-
mented by semantically rich complex edit rules such as refactoring operations.
Typically, many complex edit rules can be composed of basic edit rules generated
by SERGe.

Optionally, a set of trace impact patterns can be specified as additional input
for the coupling analysis. Trace impact patterns are also specified in Henshin.
We refer to these pattern specifications as trace impact rules. Trace impact rules
do not implement in-place transformations, but serve as specifications of graph
patterns which are to be found by the Henshin matching engine. Obviously, trace
impact rules have to be specified manually by a domain engineer.

PPU Case Study. In order to demonstrate the feasibility of our approach, we
have adapted the analysis framework to be used in the PPU(Pick and Place
Unit) case study [11], which provides several evolution scenarios of a laboratory
plant. In our previous work [4], we modeled each of the scenarios from two
di↵erent viewpoints using two types of modeling languages: A simple architecture
description language (SA) was used to model the system architecture, fault trees
(FT) were used to model undesired system states and their possible causes.

All configuration artifacts which are needed to adapt the analysis framework
to SA and FT models are available at the EnSure website2. In summary, we
identified 82 edit rules available for FT models, 69 of them could be generated
with SERGe. For SA models, we identified 42 suitable edit rules of which only
one had to be specified manually, all other 41 edit rules could be generated with
SERGe. In addition, we specified 6 trace impact rules serving as additional input
of the coupling analysis. Consequently, we were able to automatically generate
the results that have been produced by a manual analysis in our previous work
[4].

5 Related work

Most approaches to model co-evolution address the migration of di↵erent types of
MDE artifacts in response to meta-model adaptions. MDE artifacts which have
to be migrated are, for example, instance models [7], model transformations [14],
or syntactic and semantic constraints [3].

Only a few approaches address the evolution of multi-view models, which is
most often considered as a model synchronization problem. Solutions are often
based on the principle of bidirectional model transformations which are used to
derive incremental change propagation rules, e.g., [5, 16, 6]. Among them, the
approaches of Giese et al. [5] and Hermann et al. [6] are based on Triple Graph
Grammars (TGGs). TGG rules describe correspondences between elements of
source and target models together with the according forward and backward

2 http://www.iste.uni-stuttgart.de/rss/projects/ensure/co-evolution
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editing behavior. Bergmann et al. [2] present a novel type of model transfor-
mation to which they refer to as change-driven transformations. Change-driven
transformations are directly triggered by complex model changes and thus can
be utilized to specify sophisticated co-evolution patterns. A similar approach is
presented by Wimmer et al. [15].

In contrast to our approach, TGG rules and change-driven transformations
must be specified manually, whereas we intend to generate our co-evolution
rules. In fact, we believe that existing approaches based on TGGs, change-driven
transformations or similar techniques, can be also supported by our co-evolution
analysis framework. Up to the best of our knowledge, we are not aware of any
approach providing a framework to empirically study co-evolution by analyzing
the history of co-evolving models.

6 Conclusion and Future Work

Many approaches for consistently co-evolving models and other related MDE
artifacts have been proposed recently. Some are tailored to fixed source and
target domains while others are more generic and adaptable.

However, correlation and coupling of changes has not been researched in-
depth for many types of co-evolving (sub-)models. In order to close this research
gap, we focus on establishing a co-evolution analysis framework to analyze the
history of co-evolving models of arbitrary types. This will provide the foundation
for synthesizing co-evolution rules in an automated way. Although the analysis
framework still needs some configuration data as input, we conclude from the
PPU case study that this adaption to a dedicated source and target domain can
be done with moderate e↵ort. Currently, the co-evolution rules which we finally
intend to use as input of a co-evolution framework (see Figure 1) still have to
be manually synthesized based on the information which is produced by the
analysis framework. Larger case studies are needed to evaluate how far we can
push the generation of co-evolution rules and how much training data is needed
to derive appropriate co-evolution rules.

On the one hand, these co-evolution rules can be used to configure existing
model synchronization frameworks in cases of domains where the co-evolution
process can be fully automated. On the other hand, co-evolution rules serve
as basis for a recommender system, which is able to handle semi-automated
co-evolution of models. The latter one is subject to our future work.
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