
Minxing Tang

Complete Shadow Symbolic
Execution with Java PathFinder

Yannic Noller Lars GrunskeTimo KehrerHoang Lam 
Nguyen

Humboldt-Universität zu Berlin

1Java Pathfinder Workshop 2019yannic.noller@hu-berlin.de

Regression Testing
Problem Solution Evaluation SummaryFuture WorkBackground

2Java Pathfinder Workshop 2019yannic.noller@hu-berlin.de

1 int foo (int x) {

2 int y;

3 if (x < 0) {

4 y = -x;

5 } else {

6 y = 2 * x;

7 }

8 if (y > 1) {

9 return 0;

10 } else {

11 if (y == 1)

12 assert(false);

13 }

14 return 1;

15 }

assertion error for x=-1

Regression Testing
Problem Solution Evaluation SummaryFuture WorkBackground

3Java Pathfinder Workshop 2019yannic.noller@hu-berlin.de

1 int foo (int x) {

2 int y;

3 if (x < 0) {

4- y = -x;

4+ y = x * x;

5 } else {

6 y = 2 * x;

7 }

8+ y = y + 1;

9 if (y > 1) {

10 return 0;

11 } else {

12 if (y == 1)

13 assert(false);

14 }

15 return 1;

16 }

assertion error

for x=-1 is fixed

(returns 0)

introduced new

assertion error

for x=0
(previously returned 1)
→ Regression Bug

Symbolic Execution
(a short recap)

1 int foo (int x) {

2 int y;

3 if (x < 0) {

4 y = -x;

5 } else {

6 y = 2 * x;

7 }

8 if (y > 1) {

9 return 0;

10 } else {

11 if (y == 1)

12 assert(false);

13 }

14 return 1;

15 }

[TRUE] x=𝕏

[TRUE] 𝕏 < 0 ?

[𝕏<0] y := -𝕏

[𝕏<0] -𝕏 > 1 ?

[𝕏<0⋀-𝕏>1]

return 0;

[𝕏<0⋀-𝕏≤1]

-𝕏 = 1 ?

[𝕏<0⋀-𝕏≤1⋀-𝕏=1]

assert(false);

[𝕏<0⋀-𝕏≤1⋀-𝕏≠1] 
return 1;

[𝕏≥0] y := 2*𝕏

[𝕏≥0] 2*𝕏 > 1 ?

true false

…
true false

true false

falsetrue

[𝕏<-1]

[𝕏=-1]

UNSAT

[𝕏=0]

return 1;

[𝕏>0]

return 0;

path condition

4Java Pathfinder Workshop 2019yannic.noller@hu-berlin.de

Problem Solution Evaluation SummaryFuture WorkBackground

[Clarke1976, King1976]

Goal: generate test cases to expose diverging
behavior of two software versions

Shadow Symbolic Execution
(Palikareva, Kuchta, and Cadar; ICSE 2016)

5Java Pathfinder Workshop 2019yannic.noller@hu-berlin.de

Problem Solution Evaluation SummaryFuture WorkBackground

Figure 4: A high-level overview of shadow symbolic execution.

program under test (alternatively, the old version and the
patch), and ii) the program’s test suite. The output is a set
of inputs that expose divergent behaviour between versions,
triggering either regression bugs or expected divergences.
We further divide these divergent behaviours into four sub-
categories. First, divergences that lead to generic errors (e.g.
memory errors) only in the new version are clear regression
bugs that should be fixed. Second, divergences that lead
to generic errors only in the old version are expected diver-
gences that witness the fix of that error. Third, divergences
that propagate to the output are of interest to developers,
because they can be used to quickly assess whether they are
intended changes or regression errors. Finally, divergences
that do not lead to any noticeable di↵erences could still be
of interest to developers, who could add the corresponding
inputs to the application’s test suite.

In the first step of our approach, we annotate the patches
as illustrated in Figure 3, in order to unify the old and the
new version into a single program that incorporates them
both (§3.1). Next, we select from the test suite those test
cases that touch the patch. We then perform shadow sym-
bolic execution and generate inputs that expose divergent
behaviour (§3.2). Finally, we run both versions natively on
all divergent inputs using enhanced cross-version checks and
identify those that trigger errors or output di↵erences (§3.3).

3.1 Unifying versions via patch annotations
Our approach to executing both the old and the new ver-

sion of the program in the same symbolic execution instance
is to enforce them to proceed in lockstep until they diverge
in control flow. This is done by creating a single unified
program in which the two versions are merged via change()
annotations, as we have shown on line 4 in Figure 3. Map-
ping program elements across versions [15] is a di�cult task,
as in the extreme, the two versions could be arbitrarily dif-
ferent programs. However, in practice the process can be
made su�ciently precise and furthermore automated using
various heuristics, as shown by recent work [16,23].

We currently add these annotations manually, following
the annotation patterns discussed below; however, we be-
lieve many patterns could be applied automatically, although
we leave this for future work.

Our annotations use the macro change(), which resem-
bles a function call with two arguments: the first argument
represents the code expression from the old version and the
second argument the corresponding expression from the new
version. One key property is the ability to run the old ver-
sion by replacing change() with its first argument, and the
new version by replacing it with its second argument.

Writing these annotations was easier than we initially
expected—we started by targeting very small patches (1-2

lines of code), but ended up annotating large patches of up
to several hundred lines of code. Below, we discuss the main
annotation patterns that we follow, in the order in which we
typically apply them.

1. Modifying an rvalue expression. When an expression E1
is changed to E2, the annotation is simply change(E1,
E2). As a general principle, we always push the change()
annotations as deep inside the expression as possible.
This strategy optimises the sharing between the symbolic
stores of the two versions, and it also allows for various
optimisations, such as constant folding, to be performed
by the symbolic execution engine. Examples include:

(a) Changing the right-hand side of an assignment:

x = y + change(E1, E2);

(b) Changing an argument in a function call:

f(..., change(E1, E2) + len(s), ...);

(c) Changing a conditional expression:

if (change(E1, E2))
... code ...

In the patches we examined, we observed that developers
often change the control flow in the program by strength-
ening or weakening existing conditional expressions, i.e.
by adding or removing boolean clauses. For instance:

(d) Weakening a condition from A to A || B :

if (A || change(false, B))
... code ...

(e) Strengthening a condition from A to A && B :

if (A && change(true, B))
... code ...

We choose a di↵erent style of annotations for strengthen-
ing of a condition from A || B to B and for weakening a
condition from A && B to B:

(f) Strengthening a condition from A || B to B :

if (change(A || B, B))
... code ...

(g) Weakening a condition from A && B to B :

if (change(A && B, B))
... code ...

The reason for using this di↵erent style is to avoid the
introduction of spurious divergences. For example, if we
annotated a strengthening of a condition from A || B to
B as if (change(A, false)|| B), then if A is true
and B is also true, a divergence would be reported, even
though the two versions would take the same then side
of the branch. While this annotation might be preferable
when a stronger coverage criterion such as MC/DC [11]
is desired, in our experiments we prioritise divergences
that propagate to the output.

[Palikareva2016]
1 int foo (int x) {

2 int y;

3 if (x < 0) {

4- y = -x;

4+ y = x * x;

5 } else {

6 y = 2 * x;

7 }

8+ y = y + 1;

9 if (y > 1) {

10 return 0;

11 } else {

12 if (y == 1)

13 assert(false);

14 }

15 return 1;

16 }

1 int foo (int x) {

2 int y;

3 if (x < 0) {

4 y = change(-x, x*x);
5 } else {

6 y = 2 * x;

7 }

8 y = change(y, y + 1);

9 if (y > 1) {

10 return 0;

11 } else {

12 if (y == 1)

13 assert(false);

14 }

15 return 1;

16 }

6Java Pathfinder Workshop 2019yannic.noller@hu-berlin.de

Problem Solution Evaluation SummaryFuture WorkBackground

Figure 4: A high-level overview of shadow symbolic execution.

program under test (alternatively, the old version and the
patch), and ii) the program’s test suite. The output is a set
of inputs that expose divergent behaviour between versions,
triggering either regression bugs or expected divergences.
We further divide these divergent behaviours into four sub-
categories. First, divergences that lead to generic errors (e.g.
memory errors) only in the new version are clear regression
bugs that should be fixed. Second, divergences that lead
to generic errors only in the old version are expected diver-
gences that witness the fix of that error. Third, divergences
that propagate to the output are of interest to developers,
because they can be used to quickly assess whether they are
intended changes or regression errors. Finally, divergences
that do not lead to any noticeable di↵erences could still be
of interest to developers, who could add the corresponding
inputs to the application’s test suite.

In the first step of our approach, we annotate the patches
as illustrated in Figure 3, in order to unify the old and the
new version into a single program that incorporates them
both (§3.1). Next, we select from the test suite those test
cases that touch the patch. We then perform shadow sym-
bolic execution and generate inputs that expose divergent
behaviour (§3.2). Finally, we run both versions natively on
all divergent inputs using enhanced cross-version checks and
identify those that trigger errors or output di↵erences (§3.3).

3.1 Unifying versions via patch annotations
Our approach to executing both the old and the new ver-

sion of the program in the same symbolic execution instance
is to enforce them to proceed in lockstep until they diverge
in control flow. This is done by creating a single unified
program in which the two versions are merged via change()
annotations, as we have shown on line 4 in Figure 3. Map-
ping program elements across versions [15] is a di�cult task,
as in the extreme, the two versions could be arbitrarily dif-
ferent programs. However, in practice the process can be
made su�ciently precise and furthermore automated using
various heuristics, as shown by recent work [16,23].

We currently add these annotations manually, following
the annotation patterns discussed below; however, we be-
lieve many patterns could be applied automatically, although
we leave this for future work.

Our annotations use the macro change(), which resem-
bles a function call with two arguments: the first argument
represents the code expression from the old version and the
second argument the corresponding expression from the new
version. One key property is the ability to run the old ver-
sion by replacing change() with its first argument, and the
new version by replacing it with its second argument.

Writing these annotations was easier than we initially
expected—we started by targeting very small patches (1-2

lines of code), but ended up annotating large patches of up
to several hundred lines of code. Below, we discuss the main
annotation patterns that we follow, in the order in which we
typically apply them.

1. Modifying an rvalue expression. When an expression E1
is changed to E2, the annotation is simply change(E1,
E2). As a general principle, we always push the change()
annotations as deep inside the expression as possible.
This strategy optimises the sharing between the symbolic
stores of the two versions, and it also allows for various
optimisations, such as constant folding, to be performed
by the symbolic execution engine. Examples include:

(a) Changing the right-hand side of an assignment:

x = y + change(E1, E2);

(b) Changing an argument in a function call:

f(..., change(E1, E2) + len(s), ...);

(c) Changing a conditional expression:

if (change(E1, E2))
... code ...

In the patches we examined, we observed that developers
often change the control flow in the program by strength-
ening or weakening existing conditional expressions, i.e.
by adding or removing boolean clauses. For instance:

(d) Weakening a condition from A to A || B :

if (A || change(false, B))
... code ...

(e) Strengthening a condition from A to A && B :

if (A && change(true, B))
... code ...

We choose a di↵erent style of annotations for strengthen-
ing of a condition from A || B to B and for weakening a
condition from A && B to B:

(f) Strengthening a condition from A || B to B :

if (change(A || B, B))
... code ...

(g) Weakening a condition from A && B to B :

if (change(A && B, B))
... code ...

The reason for using this di↵erent style is to avoid the
introduction of spurious divergences. For example, if we
annotated a strengthening of a condition from A || B to
B as if (change(A, false)|| B), then if A is true
and B is also true, a divergence would be reported, even
though the two versions would take the same then side
of the branch. While this annotation might be preferable
when a stronger coverage criterion such as MC/DC [11]
is desired, in our experiments we prioritise divergences
that propagate to the output.

[Palikareva2016]

Concolic
Execution

Bounded
Symbolic
Execution

(BSE)

1
2

Four-way Forking[TRUE] 𝛂 ?

[𝛂] … [¬𝛂] …

true false [TRUE] change(𝛂, 𝛃) ?

[𝛂∧𝛃] … [¬𝛂∧¬𝛃] …

old: true
new: true

Two-way Forking

old: false
new: false

old: false
new: true

old: true
new: false

[𝛂∧¬𝛃] … [¬𝛂∧𝛃] …

sameTRUE sameFALSE diffTRUE diffFALSE

7Java Pathfinder Workshop 2019yannic.noller@hu-berlin.de

Problem Solution Evaluation SummaryFuture WorkBackground

Figure 4: A high-level overview of shadow symbolic execution.

program under test (alternatively, the old version and the
patch), and ii) the program’s test suite. The output is a set
of inputs that expose divergent behaviour between versions,
triggering either regression bugs or expected divergences.
We further divide these divergent behaviours into four sub-
categories. First, divergences that lead to generic errors (e.g.
memory errors) only in the new version are clear regression
bugs that should be fixed. Second, divergences that lead
to generic errors only in the old version are expected diver-
gences that witness the fix of that error. Third, divergences
that propagate to the output are of interest to developers,
because they can be used to quickly assess whether they are
intended changes or regression errors. Finally, divergences
that do not lead to any noticeable di↵erences could still be
of interest to developers, who could add the corresponding
inputs to the application’s test suite.

In the first step of our approach, we annotate the patches
as illustrated in Figure 3, in order to unify the old and the
new version into a single program that incorporates them
both (§3.1). Next, we select from the test suite those test
cases that touch the patch. We then perform shadow sym-
bolic execution and generate inputs that expose divergent
behaviour (§3.2). Finally, we run both versions natively on
all divergent inputs using enhanced cross-version checks and
identify those that trigger errors or output di↵erences (§3.3).

3.1 Unifying versions via patch annotations
Our approach to executing both the old and the new ver-

sion of the program in the same symbolic execution instance
is to enforce them to proceed in lockstep until they diverge
in control flow. This is done by creating a single unified
program in which the two versions are merged via change()
annotations, as we have shown on line 4 in Figure 3. Map-
ping program elements across versions [15] is a di�cult task,
as in the extreme, the two versions could be arbitrarily dif-
ferent programs. However, in practice the process can be
made su�ciently precise and furthermore automated using
various heuristics, as shown by recent work [16,23].

We currently add these annotations manually, following
the annotation patterns discussed below; however, we be-
lieve many patterns could be applied automatically, although
we leave this for future work.

Our annotations use the macro change(), which resem-
bles a function call with two arguments: the first argument
represents the code expression from the old version and the
second argument the corresponding expression from the new
version. One key property is the ability to run the old ver-
sion by replacing change() with its first argument, and the
new version by replacing it with its second argument.

Writing these annotations was easier than we initially
expected—we started by targeting very small patches (1-2

lines of code), but ended up annotating large patches of up
to several hundred lines of code. Below, we discuss the main
annotation patterns that we follow, in the order in which we
typically apply them.

1. Modifying an rvalue expression. When an expression E1
is changed to E2, the annotation is simply change(E1,
E2). As a general principle, we always push the change()
annotations as deep inside the expression as possible.
This strategy optimises the sharing between the symbolic
stores of the two versions, and it also allows for various
optimisations, such as constant folding, to be performed
by the symbolic execution engine. Examples include:

(a) Changing the right-hand side of an assignment:

x = y + change(E1, E2);

(b) Changing an argument in a function call:

f(..., change(E1, E2) + len(s), ...);

(c) Changing a conditional expression:

if (change(E1, E2))
... code ...

In the patches we examined, we observed that developers
often change the control flow in the program by strength-
ening or weakening existing conditional expressions, i.e.
by adding or removing boolean clauses. For instance:

(d) Weakening a condition from A to A || B :

if (A || change(false, B))
... code ...

(e) Strengthening a condition from A to A && B :

if (A && change(true, B))
... code ...

We choose a di↵erent style of annotations for strengthen-
ing of a condition from A || B to B and for weakening a
condition from A && B to B:

(f) Strengthening a condition from A || B to B :

if (change(A || B, B))
... code ...

(g) Weakening a condition from A && B to B :

if (change(A && B, B))
... code ...

The reason for using this di↵erent style is to avoid the
introduction of spurious divergences. For example, if we
annotated a strengthening of a condition from A || B to
B as if (change(A, false)|| B), then if A is true
and B is also true, a divergence would be reported, even
though the two versions would take the same then side
of the branch. While this annotation might be preferable
when a stronger coverage criterion such as MC/DC [11]
is desired, in our experiments we prioritise divergences
that propagate to the output.

[Palikareva2016]

Shadow Symbolic Execution with Java PathFinder

Yannic Noller
Humboldt University of Berlin

yannic.noller@informatik.hu-berlin.de

Hoang Lam Nguyen
Humboldt University of Berlin

nguyenhx@informatik.hu-berlin.de

Minxing Tang
Humboldt University of Berlin

tangminx@informatik.hu-berlin.de

Timo Kehrer
Humboldt University of Berlin

timo.kehrer@informatik.hu-berlin.de

ABSTRACT
Regression testing ensures that a software system when it evolves
still performs correctly and that the changes introduce no unin-
tended side-e↵ects. However, the creation of regression test cases
that show divergent behavior needs a lot of e↵ort. A solution
is the idea of shadow symbolic execution, originally implemented
based on KLEE for programs written in C, which takes a unified
version of the old and the new program and performs symbolic
execution guided by concrete values to explore the changed behav-
ior. In this work, we apply the idea of shadow symbolic execution
to Java programs and, hence, provide an extension of the Java
PathFinder (JPF) project to perform shadow symbolic execution
on Java bytecode. The extension has been applied on several sub-
jects from the JPF test classes where it successfully generated test
inputs that expose divergences relevant for regression testing.

Keywords
Java PathFinder; Symbolic PathFinder; Symbolic Execution; Re-
gression Testcase Generation; Software Engineering

1. INTRODUCTION
One of the distinctive properties of real-world software is that it
evolves, since it has to be adapted to its continuously changing
environment. Software changes, usually referred to as patches,
typically fix incorrect behavior or introduce new functionality.
However, it is also known that these patches are prone to intro-
duce new errors [3, 10], which is why users are often hesitant to
update to the latest version.

To prevent this problem, regression testing is performed on the
modified program version in order to provide confidence that the
newly introduced software changes behave as expected and have
no unintended side-e↵ects. Since this is an expensive process, it is
important to select the appropriate test cases. For instance, sev-
eral regression testing techniques [4, 2] select and run a subset of
the test cases from the program’s existing test suite or automat-
ically generate test cases with high coverage of the changed code
[6]. However, even if the selected test cases achieve full statement
or full branch coverage of the patch code, they do not necessarily
exercise all new behaviors introduced by the patch.

To give an illustration, consider a patch that only changes the
conditional statement if(x > 5) to if(x > 10). The two test
cases x=0 and x=15 cover both sides of the branch, but the exe-
cution of these inputs is completely una↵ected by the patch since
they result in the same branching behavior in both program ver-
sions. On the other hand, if x is between 6 and 10 (inclusive),
the two program versions exhibit divergent behavior as they take
di↵erent sides of the branch.

Recently, Palikareva et al. [7] have introduced a dynamic sym-

bolic execution-based technique, which they refer to as shadow
symbolic execution. Their technique is designed to generate test
inputs that cover new program behaviors introduced by a patch.
Shadow symbolic execution works by executing both the old (bug-
gy) and new (patched) version in the same symbolic execution
instance, with the old version shadowing the new one. Therefore,
it is necessary to manually merge both programs into a change-
annotated, unified version. Based on such a unified version, the
technique detects divergences along the execution path of an in-
put that exercises the patch. Their tool Shadow, which we refer
to as ShadowKLEE , is implemented on top of the KLEE symbolic
execution engine [1].

Our novel implementation ShadowJPF , as an extension of the
Java PathFinder (JPF) [9], applies the idea of shadow symbolic
execution to Java bytecode and, hence, allows to detect diver-
gences in Java programs that expose new program behavior. The
application of our extension on various subjects from the JPF test
classes evaluate its test case generation capabilities.

2. SHADOW SYMBOLIC EXECUTION
Shadow symbolic execution [7] aims at generating test inputs that
cover the new program behaviors introduced by a patch. Their
approach takes as input the buggy and the patched version (say
old and new, respectively) and assumes an existing test suite.

1 int foo(int x){
2 int y;
3 i f (x < 0){
4 y = -x;
5 }
6 else{
7 y = 2 * x;
8 }

9+ y = -y;
10 i f (y > 1){
11 return 0;
12 } else {
13 i f (y == 1 || y <= -2){
14 assert(false);
15 }
16 }
17 return 1;
18 }

Listing 1: Toy example to show the approach of shadow
symbolic execution.

To give an illustration, consider the patch for the method foo()

in Listing 1. There is an additional assignment in line 9 for the
variable y that negates it to �y. This patch fixes the assertion
error (line 14) for x = �1, but it introduces a new assertion
error for, e.g., x = �2. Since the approach aims at generating
test cases for the di↵erent execution paths of the buggy and the

%0*�������������������������
IUUQ���EPJ�BDN�PSH������������������������

ACM SIGSOFT Software Engineering Notes Page 1 October 2017 Volume 42 Number 4

(Noller et al.; JPF 2017)

8Java Pathfinder Workshop 2019yannic.noller@hu-berlin.de

Problem Solution Evaluation SummaryFuture WorkBackground

Limitations (1)
Deeper divergences might be missed in the BSE phase

due to narrow path conditions based on concrete inputs.

1 int foo (int x) {

2 int y;

3 if (x < 0) {

4 y = change(-x, x*x);
5 } else {

6 y = 2 * x;

7 }

8 y = change(y, y + 1);

9 if (y > 1) {

10 return 0;

11 } else {

12 if (y == 1)

13 assert(false);

14 }

15 return 1;

16 }

x=-1 (fully covers the changes)

path condition up to line 9:

[𝕏 < 0]

to reach assertion error BSE
needs to follow false branch

with condition: [𝕏2 + 1 ≤ 1]

only possible for x=0, but [𝕏 < 0]

9Java Pathfinder Workshop 2019yannic.noller@hu-berlin.de

Problem Solution Evaluation SummaryFuture WorkBackground

Limitations (2)
The initial input has to cover not only changed
locations, but also potential divergence points.

1 int bar (int x, int y) {

2 int z = change(x, y);

3 if ((x+y) == 5) {

4 if (z == -100)
5 assert(false);

6 }

7 return 0;

8 }

divergence only possible in line 4

collect change and then reach
divergence (point)

10Java Pathfinder Workshop 2019yannic.noller@hu-berlin.de

all inputs with x+y ≠ 5 would
miss the divergence

Problem Solution Evaluation SummaryFuture WorkBackground

Complete Shadow Symbolic
Execution

11Java Pathfinder Workshop 2019yannic.noller@hu-berlin.de

Problem Solution Evaluation SummaryFuture WorkBackground

Shadow Symbolic Execution strongly depends on concrete inputs

combines bounded symbolic execution with four-way forking1

2

exploration of diffTRUE/FALSE paths only for the new version3

full exploration of sameTRUE/FALSE paths, as long as they can or have

reached a change

1 int foo (int x) {

2 int y;

3 if (x < 0) {

4 y = change(-x, x*x);
5 } else {

6 y = 2 * x;

7 }

8 y = change(y, y + 1);

9 if (y > 1) {

10 return 0;

11 } else {

12 if (y == 1)

13 assert(false);

14 }

15 return 1;

16 }

12Java Pathfinder Workshop 2019yannic.noller@hu-berlin.de

Problem Solution Evaluation SummaryFuture WorkBackground

[PCold, PCnew : true]
x = X

0

[PCold : true]
[PCnew : true]
3 : X < 0 ?
1

[PCold : (X < 0)]
[PCnew : (X < 0)]

SAT [x < 0]
9old : �X > 1 ?

9new : X2 + 1 > 1 ?

2

[PCold : (X < 0) ^ (�X > 1)]
[PCnew : (X < 0) ^ (X2 + 1 > 1)]

SAT [x  �2]
10both : return 0;

3

[PCold : (X < 0) ^ (�X  1)]
[PCnew : (X < 0) ^ (X2 + 1  1)]

UNSAT
4

[PCold : (X < 0) ^ (�X  1)]
[PCnew : (X < 0) ^ (X2 + 1 > 1)]

SAT [x = �1]
13old : Assertion Error

10new : return 0;

5

[PCold : (X < 0) ^ (�X > 1)]
[PCnew : (X < 0) ^ (X2 + 1  1)]

UNSAT
6

[PCold : (X � 0)]
[PCnew : (X � 0)]

SAT [x � 0]
9old : 2X > 1 ?

9new : 2X + 1 > 1 ?

7

[PCold : (X � 0) ^ (2X > 1)]
[PCnew : (X � 0) ^ (2X + 1 > 1)]

SAT [x � 1]
10both : return 0;

8

[PCold : (X � 0) ^ (2X  1)]
[PCnew : (X � 0) ^ (2X + 1  1)]

SAT [x = 0]
12old : 2X == 1 ?

12new : 2X + 1 == 1 ?

9

[PCold : (X � 0) ^ (2X  1) ^ (2X == 1)]
[PCnew : (X � 0) ^ (2X + 1  1) ^ (2X + 1 == 1)]

UNSAT
10

[PCold : (X � 0) ^ (2X  1) ^ (2X 6= 1)]
[PCnew : (X � 0) ^ (2X + 1  1) ^ (2X + 1 6= 1)]

UNSAT
11

[PCold : (X � 0) ^ (2X  1) ^ (2X 6= 1)]
[PCnew : (X � 0) ^ (2X + 1  1) ^ (2X + 1 == 1)]

SAT [x = 0]
16old : return 1

13new : Assertion Error

12

[PCold : (X � 0) ^ (2X  1) ^ (2X == 1)]
[PCnew : (X � 0) ^ (2X + 1  1) ^ (2X + 1 6= 1)]

UNSAT
13

[PCold : (X � 0) ^ (2X  1)]
[PCnew : (X � 0) ^ (2X + 1 > 1)]

UNSAT
14

[PCold : (X � 0) ^ (2X > 1)]
[PCnew : (X � 0) ^ (2X + 1  1)]

UNSAT
15

[PCold : (X � 0)]
[PCnew : (X < 0)]

UNSAT
16

[PCold : (X < 0)]
[PCnew : (X � 0)]

UNSAT
17

sametrue

sametrue

samefalse

difftrue

difffalse

samefalse

sametrue
samefalse

difftrue

difffalse

sametrue samefalse

difftrue

difffalse

difftrue

difffalse

Figure 1: Complete four-way forking symbolic execution tree for the combined execution of the old and the new
versions of the program in Listing 1. Each node represents a state in the symbolic search space, where each state
holds the combined information of the old and the new symbolic executions.

program with bounded symbolic execution and four-way forking
in a depth first manner, while detecting divergences on the fly.
That is, instead of searching for divergences only along the path
of a concrete input, the execution is forked into four di↵erent
paths at each branching point (samefalse , sametrue , di↵false and
di↵true). The symbolic execution tree in Figure 1 represents ex-
actly the states being explored by our approach. As soon as the
executions of the two program versions diverge, i.e., we start with
the exploration of a di↵x path, the execution of subsequent condi-
tional statements forks execution into two paths based on the exe-
cution of the new version only. Nevertheless, since we also explore
paths where both program versions do not yet diverge (samefalse
and sametrue paths), it is possible to detect divergences at every
depth of the execution path. As soon as the execution terminates
or a user-specified depth is reached, we check if the current path
exercised divergent program behavior (i.e., if the path is a di↵

path) and generate a concrete test input in that case.

Adding and removing straightline code: In [13], the special
case of adding and removing straightline code is handled by us-
ing the annotations like if(change(false,true)), which imme-
diately trigger a di↵ path and terminate SSE, even though both
versions might still exhibit the same branching behavior. Our
approach continues SSE in this case, but only updates the sym-
bolic information of the respective version. This is done by using
the separately handled annotation if(execute(version)){...},
where version denotes the program version of the enclosed code
(OLD or NEW). Any conditional statement inside such a code block
forks execution into two separate paths based on the symbolic val-
ues of the specified version only. A divergence inside an if(exec-

ute(version)) block is only possible if it contains a return state-
ment, i.e., if the particular program version returns early. There-
fore, our handling of added/removed code blocks is more precise
as it does not lead to spurious divergences.

Implementation: We implemented our approach in ShadowJPF+

by augmenting our preliminary work on ShadowJPF [12] with our
new ideas on the search heuristic. In particular, we extended
the implementation of the conditional bytecode instructions (e.g.,
IFEQ, IF_ICMPGT) such that the execution is forked into four paths
(or two paths, while exploring a di↵ path). The arithmetic byte-

code instructions (e.g., IADD, IINC) have also been updated to
specifically support the newly introduced if(execute(version))

annotation. The execution of ShadowJPF+ on the program pre-
sented in Listing 1 results in the two test inputs x=-1 and x=0
(cf. Table 3) for the expected di↵ paths, which fits in with the
four-way forking symbolic execution tree in Figure 1.

Directed Exploration: Our basic approach will explore unchang-
ed paths, i.e. paths without any change-annotation, until the very
end, where it will eventually prune them because they do not rep-
resent a di↵ path. This can slow down the symbolic exploration,
which should only explore paths that can truly reach a changed
statement. Therefore, we propose an optimization, which com-
bines complete shadow symbolic execution with directed sym-
bolic execution. We leverage the existing work on control-flow
guided symbolic exploration strategies [10] to limit our explo-
ration to paths that can reach a changed statement only. We
added this directed exploration as an optional extension to our
tool ShadowJPF+, since the computation overhead for the ICFG
might not be worthwhile for some smaller applications.

4. EVALUATION
Our implementation and all evaluation artifacts are available on
GitHub: https://github.com/hub-se/jpf-shadow-plus.
We evaluated our approach with the following research questions:
RQ.1: Can ShadowJPF+ reveal more divergent behaviors than
ShadowJPF?
RQ.2: How does ShadowJPF+ compare to ShadowJPF in terms
of performance?
RQ.3: Can ShadowJPF+ expose real-world regression bugs?

Subjects: We selected the following software artifacts as our ex-
perimental subjects from the o�cial SPF repository1 (with the
corresponding LOC): Rational.abs (30), Rational.gcd (40), Ratio-
nal.simplify (51), WBS.update (234) and WBS.launch (242) and
generated in total 79 mutants with the Major mutation frame-
work [8] (similar as [12]) with the following change types: Re-
lational Operator Replacement (ROR), Operator Replacement
Unary (ORU), Arithmetic Operator Replacement (AOR) and State-
ment Deletion (STD). Since Major only generated single mutants

1
https://github.com/SymbolicPathFinder/jpf-symbc

13Java Pathfinder Workshop 2019yannic.noller@hu-berlin.de

Problem Solution Evaluation SummaryFuture WorkBackground

fixed

assertion error

x=-1

new

assertion error

x=0

same behavior

for x ≥ 1 and x ≤ -2

(return 0)

https://github.com/hub-se/jpf-shadow-plus

14Java Pathfinder Workshop 2019yannic.noller@hu-berlin.de

Problem Solution Evaluation SummaryFuture WorkBackground

https://github.com/hub-se/jpf-shadow-plus

Experiments

15Java Pathfinder Workshop 2019yannic.noller@hu-berlin.de

Problem Solution Evaluation SummaryFuture WorkBackground

comparison between ShadowJPF+ with ShadowJPF

RQ1: Effectiveness
Can ShadowJPF+ reveal more divergent behaviors than ShadowJPF?

RQ2: Performance
How does ShadowJPF+ compare to ShadowJPF in terms of performance?

RQ3: Real Regression Bugs
Can ShadowJPF+ expose real-world regression bugs?

16Java Pathfinder Workshop 2019yannic.noller@hu-berlin.de

Problem Solution Evaluation SummaryFuture WorkBackground

Subject LOC

Rational.abs 30

Rational.gcd 40

Rational.simplify 51

WBS.update 234

WBS.launch 242

generated 79 mutants with Major [Just2011]

17Java Pathfinder Workshop 2019yannic.noller@hu-berlin.de

Problem Solution Evaluation SummaryFuture WorkBackground

per class, we manually combined a randomly chosen subset of
them to get complex mutants with multiple changes per class. Ad-
ditionally, we inspected several open source projects on GitHub
to find real regression bugs. In the Joda-Time library we found
the issue #3282, which fixes a regression bug that was introduced
with the fix for the issue #1903.

Subject Type Time [s] # States # Paths (di↵)
SJ SJ+ SJ SJ+ SJ SJ+

Rational.abs 1 ROR <1 <1 21 32 1 1
Rational.abs 2 ROR <1 <1 21 32 1 1
Rational.abs 3 ROR <1 <1 13 20 1 1
Rational.abs 4 ORU <1 <1 5 6 0 0
Rational.abs 5 ORU <1 <1 5 6 0 0
Rational.gcd 1 ROR <1 <1 42 220 0 0
Rational.gcd 2 ROR <1 <1 23 48 2 4
Rational.gcd 3 ROR <1 <1 40 234 3 3
Rational.gcd 4 STD <1 <1 43 223 3 3
Rational.gcd 5 ROR <1 <1 27 174 1 2
Rational.gcd 6 ROR <1 <1 27 610 1 2
Rational.gcd 7 ROR <1 <1 87 692 1 16
Rational.gcd 8 STD inf inf - - - -
Rational.gcd 9 ROR <1 <1 45 434 0 0
Rational.gcd 10 ROR <1 <1 57 626 3 48
Rational.gcd 11 ROR <1 <1 15 42 1 2
Rational.gcd 12 ROR <1 <1 104 308 3 6
Rational.gcd 13 ROR <1 <1 104 642 3 14
Rational.gcd 14 ROR <1 <1 43 236 1 6
Rational.gcd 15 AOR <1 <1 43 178 4 10
Rational.gcd 16 AOR <1 <1 39 170 4 10
Rational.gcd 17 AOR <1 1 60 342 8 36
Rational.gcd 18 STD <1 <1 37 166 2 6
Rational.gcd 19 AOR <1 4 49 198 5 18
Rational.gcd 20 AOR <1 <1 49 198 5 18
Rational.gcd 21 AOR 1 94 83 386 9 34
Rational.gcd 22 STD <1 <1 49 198 5 18
Rational.simplify 1 ROR <1 <1 55 284 4 6
Rational.simplify 2 ROR <1 <1 63 370 3 3
Rational.simplify 3 ROR <1 <1 71 252 4 6
Rational.simplify 4 ORU <1 <1 28 280 2 8
Rational.simplify 5 ROR <1 <1 42 364 0 1
Rational.simplify 6 ROR <1 <1 31 96 3 7
Rational.simplify 7 ROR <1 <1 63 366 4 4
Rational.simplify 8 STD <1 <1 19 355 1 4
Rational.simplify 9 ROR <1 <1 31 222 1 3
Rational.simplify 10 ROR <1 <1 73 770 1 3
Rational.simplify 11 ROR <1 <1 67 588 1 17
Rational.simplify 12 STD inf inf - - - -
Rational.simplify 13 ROR <1 1 45 578 0 1
Rational.simplify 14 ROR <1 <1 61 898 3 49
Rational.simplify 15 ROR <1 <1 15 74 1 3
Rational.simplify 16 ROR <1 <1 104 388 3 7
Rational.simplify 17 ROR <1 <1 104 674 3 15
Rational.simplify 18 ROR <1 <1 34 280 1 7
Rational.simplify 19 AOR <1 <1 47 274 4 11
Rational.simplify 20 AOR <1 <1 43 266 4 11
Rational.simplify 21 AOR <1 1 72 550 8 37
Rational.simplify 22 STD <1 <1 37 246 2 7
Rational.simplify 23 AOR <1 6 49 230 5 19
Rational.simplify 24 AOR <1 <1 49 230 5 19
Rational.simplify 25 AOR <1 95 83 418 9 35
Rational.simplify 26 STD <1 <1 49 230 5 19
Rational.simplify 27 AOR <1 <1 29 338 0 1
Rational.simplify 2 16 ROR2 <1 <1 138 420 6 9
Rational.simplify 2 27 ROR,AOR <1 <1 63 370 3 3
Rational.simplify 3 11 ROR2 <1 <1 108 368 3 12
Rational.simplify 16 27 ROR,AOR <1 <1 104 388 3 7
Rational.simplify 2 16 27 ROR2,AOR <1 <1 138 420 6 9

Table 1: Experimental results for the Rational subjects.

ShadowJPF needs initial test inputs, so we generated test inputs
that each test case covers at least one change-statement, similar
to the assumption in [13]. For ShadowJPF+ we do not need these
concrete inputs. We added the change-annotations to the mutants
and executed them with both: ShadowJPF and ShadowJPF+.
Afterwards, we manually compared the resulting path conditions.
For our experiments we disabled the guided symbolic exploration
because due to the small sizes of the mutated subjects it did not
provide any time benefit.

2
https://github.com/JodaOrg/joda-time/issues/328

3
https://github.com/JodaOrg/joda-time/issues/190

Subject Type Time [s] # States # Paths (di↵)
SJ SJ+ SJ SJ+ SJ SJ+

WBS.update 1 ROR8 <1 1 70 880 2 24
WBS.update 2 ROR8 <1 <1 73 428 2 12
WBS.update 3 ROR7,AOR <1 <1 51 554 2 24
WBS.update 4 ROR6,AOR, STD <1 <1 97 618 4 18
WBS.update 5 ROR7,AOR <1 <1 109 266 6 12
WBS.update 6 ROR8 <1 <1 135 632 6 24
WBS.update 7 ROR6,AOR, STD <1 <1 123 618 6 28
WBS.update 8 ROR5,AOR2, STD <1 <1 147 232 8 8
WBS.update 9 ROR5,AOR2, STD <1 <1 89 576 4 12
WBS.update 10 ROR7,AOR <1 <1 118 914 4 7
WBS.launch 1 ROR8 4 121 11724 281080 576 13824
WBS.launch 2 ROR8 <1 2 1083 12944 36 432
WBS.launch 3 ROR7,AOR 7 120 20701 248354 1152 13824
WBS.launch 4 ROR6,AOR, STD 3 47 10208 111876 628 5472
WBS.launch 5 ROR7,AOR <1 1 1717 3506 111 222
WBS.launch 6 ROR8 11 76 32508 195176 1600 9600
WBS.launch 7 ROR6,AOR, STD 7 146 22414 313930 1152 16128
WBS.launch 8 ROR5,AOR2, STD 2 14 7313 15232 512 896
WBS.launch 9 ROR5,AOR2, STD 3 56 7585 143819 745 7109
WBS.launch 10 ROR7,AOR 30 193 48460 497118 2404 15204

Table 2: Experimental results for the WBS subjects.

Subject Time [s] # States # Paths (di↵)
SJ SJ+ SJ SJ+ SJ SJ+

Foo <1 <1 11 18 1 2
Joda-Time <1 <1 37 40 9 (6) 6

Table 3: Experimental results for the motivating example
and the presented Joda-Time regression bug.

Infrastructure: The experiments were conducted on a machine
with macOS 10.14.6 (2.9GHz Intel Core i5, 16 GB RAM). As
constraint solver for the symbolic execution we use Z3 [4] with
the version 4.5.0. We used Java v1.8.0 211 and configured the
symbolic execution with an unbounded depth limit and a timeout
of one hour.

4.1 Results and Analysis
Tables 1 and 2 show the detailed results of the mutant evalua-
tion for the Rational and WBS subjects. The first column names
the corresponding class and method that were tested together
with an id, which specifies each mutant. Column Type con-
tains the mutation change type. The following columns describe
the execution time in seconds, the number of visited states dur-
ing the symbolic exploration, and the number of resulting path
conditions for ShadowJPF (SJ) and our extension ShadowJPF+

(SJ+). Table 1 contains two mutations (Rational.gcd 8 and Ra-
tional.simplify 12), for which the mutated version results in an
infinite loop, hence, we marked them with inf and omitted them
from the analysis. We also present in Table 3 the detailed execu-
tion results for the method foo() from Listing 1 and the Joda-
Time regression bug.

RQ.1 E↵ectiveness: In order to answer RQ.1 we compared the
number of test cases, i.e., resulting path conditions, identified by
ShadowJPF and ShadowJPF+ (see Table 1, 2, and 3). In almost
all cases ShadowJPF+ was able to identify the same or a greater
number of di↵ paths than ShadowJPF. The exception is the re-
sult for the subject Joda-Time, for which ShadowJPF identified
9 di↵ paths and ShadowJPF+ identified 6 di↵ paths. However,
ShadowJPF is a↵ected by the over-approximation mentioned in
Section 2.2, and hence, it identifies incorrectly three paths as di↵
paths. For the rest, ShadowJPF is often limited by the concrete
values, which constraint the current path condition at a diver-
gence point. Therefore, ShadowJPF+ can identify significantly
more di↵ paths and at the same time is more accurate because
it mitigates the over-approximation problem. Note that in our
experiments, ShadowJPF+ was able to find all possible di↵ paths
(except for the subjects marked with inf), since there was no
further bound on the exploration depth.

per class, we manually combined a randomly chosen subset of
them to get complex mutants with multiple changes per class. Ad-
ditionally, we inspected several open source projects on GitHub
to find real regression bugs. In the Joda-Time library we found
the issue #3282, which fixes a regression bug that was introduced
with the fix for the issue #1903.

Subject Type Time [s] # States # Paths (di↵)
SJ SJ+ SJ SJ+ SJ SJ+

Rational.abs 1 ROR <1 <1 21 32 1 1
Rational.abs 2 ROR <1 <1 21 32 1 1
Rational.abs 3 ROR <1 <1 13 20 1 1
Rational.abs 4 ORU <1 <1 5 6 0 0
Rational.abs 5 ORU <1 <1 5 6 0 0
Rational.gcd 1 ROR <1 <1 42 220 0 0
Rational.gcd 2 ROR <1 <1 23 48 2 4
Rational.gcd 3 ROR <1 <1 40 234 3 3
Rational.gcd 4 STD <1 <1 43 223 3 3
Rational.gcd 5 ROR <1 <1 27 174 1 2
Rational.gcd 6 ROR <1 <1 27 610 1 2
Rational.gcd 7 ROR <1 <1 87 692 1 16
Rational.gcd 8 STD inf inf - - - -
Rational.gcd 9 ROR <1 <1 45 434 0 0
Rational.gcd 10 ROR <1 <1 57 626 3 48
Rational.gcd 11 ROR <1 <1 15 42 1 2
Rational.gcd 12 ROR <1 <1 104 308 3 6
Rational.gcd 13 ROR <1 <1 104 642 3 14
Rational.gcd 14 ROR <1 <1 43 236 1 6
Rational.gcd 15 AOR <1 <1 43 178 4 10
Rational.gcd 16 AOR <1 <1 39 170 4 10
Rational.gcd 17 AOR <1 1 60 342 8 36
Rational.gcd 18 STD <1 <1 37 166 2 6
Rational.gcd 19 AOR <1 4 49 198 5 18
Rational.gcd 20 AOR <1 <1 49 198 5 18
Rational.gcd 21 AOR 1 94 83 386 9 34
Rational.gcd 22 STD <1 <1 49 198 5 18
Rational.simplify 1 ROR <1 <1 55 284 4 6
Rational.simplify 2 ROR <1 <1 63 370 3 3
Rational.simplify 3 ROR <1 <1 71 252 4 6
Rational.simplify 4 ORU <1 <1 28 280 2 8
Rational.simplify 5 ROR <1 <1 42 364 0 1
Rational.simplify 6 ROR <1 <1 31 96 3 7
Rational.simplify 7 ROR <1 <1 63 366 4 4
Rational.simplify 8 STD <1 <1 19 355 1 4
Rational.simplify 9 ROR <1 <1 31 222 1 3
Rational.simplify 10 ROR <1 <1 73 770 1 3
Rational.simplify 11 ROR <1 <1 67 588 1 17
Rational.simplify 12 STD inf inf - - - -
Rational.simplify 13 ROR <1 1 45 578 0 1
Rational.simplify 14 ROR <1 <1 61 898 3 49
Rational.simplify 15 ROR <1 <1 15 74 1 3
Rational.simplify 16 ROR <1 <1 104 388 3 7
Rational.simplify 17 ROR <1 <1 104 674 3 15
Rational.simplify 18 ROR <1 <1 34 280 1 7
Rational.simplify 19 AOR <1 <1 47 274 4 11
Rational.simplify 20 AOR <1 <1 43 266 4 11
Rational.simplify 21 AOR <1 1 72 550 8 37
Rational.simplify 22 STD <1 <1 37 246 2 7
Rational.simplify 23 AOR <1 6 49 230 5 19
Rational.simplify 24 AOR <1 <1 49 230 5 19
Rational.simplify 25 AOR <1 95 83 418 9 35
Rational.simplify 26 STD <1 <1 49 230 5 19
Rational.simplify 27 AOR <1 <1 29 338 0 1
Rational.simplify 2 16 ROR2 <1 <1 138 420 6 9
Rational.simplify 2 27 ROR,AOR <1 <1 63 370 3 3
Rational.simplify 3 11 ROR2 <1 <1 108 368 3 12
Rational.simplify 16 27 ROR,AOR <1 <1 104 388 3 7
Rational.simplify 2 16 27 ROR2,AOR <1 <1 138 420 6 9

Table 1: Experimental results for the Rational subjects.

ShadowJPF needs initial test inputs, so we generated test inputs
that each test case covers at least one change-statement, similar
to the assumption in [13]. For ShadowJPF+ we do not need these
concrete inputs. We added the change-annotations to the mutants
and executed them with both: ShadowJPF and ShadowJPF+.
Afterwards, we manually compared the resulting path conditions.
For our experiments we disabled the guided symbolic exploration
because due to the small sizes of the mutated subjects it did not
provide any time benefit.

2
https://github.com/JodaOrg/joda-time/issues/328

3
https://github.com/JodaOrg/joda-time/issues/190

Subject Type Time [s] # States # Paths (di↵)
SJ SJ+ SJ SJ+ SJ SJ+

WBS.update 1 ROR8 <1 1 70 880 2 24
WBS.update 2 ROR8 <1 <1 73 428 2 12
WBS.update 3 ROR7,AOR <1 <1 51 554 2 24
WBS.update 4 ROR6,AOR, STD <1 <1 97 618 4 18
WBS.update 5 ROR7,AOR <1 <1 109 266 6 12
WBS.update 6 ROR8 <1 <1 135 632 6 24
WBS.update 7 ROR6,AOR, STD <1 <1 123 618 6 28
WBS.update 8 ROR5,AOR2, STD <1 <1 147 232 8 8
WBS.update 9 ROR5,AOR2, STD <1 <1 89 576 4 12
WBS.update 10 ROR7,AOR <1 <1 118 914 4 7
WBS.launch 1 ROR8 4 121 11724 281080 576 13824
WBS.launch 2 ROR8 <1 2 1083 12944 36 432
WBS.launch 3 ROR7,AOR 7 120 20701 248354 1152 13824
WBS.launch 4 ROR6,AOR, STD 3 47 10208 111876 628 5472
WBS.launch 5 ROR7,AOR <1 1 1717 3506 111 222
WBS.launch 6 ROR8 11 76 32508 195176 1600 9600
WBS.launch 7 ROR6,AOR, STD 7 146 22414 313930 1152 16128
WBS.launch 8 ROR5,AOR2, STD 2 14 7313 15232 512 896
WBS.launch 9 ROR5,AOR2, STD 3 56 7585 143819 745 7109
WBS.launch 10 ROR7,AOR 30 193 48460 497118 2404 15204

Table 2: Experimental results for the WBS subjects.

Subject Time [s] # States # Paths (di↵)
SJ SJ+ SJ SJ+ SJ SJ+

Foo <1 <1 11 18 1 2
Joda-Time <1 <1 37 40 9 (6) 6

Table 3: Experimental results for the motivating example
and the presented Joda-Time regression bug.

Infrastructure: The experiments were conducted on a machine
with macOS 10.14.6 (2.9GHz Intel Core i5, 16 GB RAM). As
constraint solver for the symbolic execution we use Z3 [4] with
the version 4.5.0. We used Java v1.8.0 211 and configured the
symbolic execution with an unbounded depth limit and a timeout
of one hour.

4.1 Results and Analysis
Tables 1 and 2 show the detailed results of the mutant evalua-
tion for the Rational and WBS subjects. The first column names
the corresponding class and method that were tested together
with an id, which specifies each mutant. Column Type con-
tains the mutation change type. The following columns describe
the execution time in seconds, the number of visited states dur-
ing the symbolic exploration, and the number of resulting path
conditions for ShadowJPF (SJ) and our extension ShadowJPF+

(SJ+). Table 1 contains two mutations (Rational.gcd 8 and Ra-
tional.simplify 12), for which the mutated version results in an
infinite loop, hence, we marked them with inf and omitted them
from the analysis. We also present in Table 3 the detailed execu-
tion results for the method foo() from Listing 1 and the Joda-
Time regression bug.

RQ.1 E↵ectiveness: In order to answer RQ.1 we compared the
number of test cases, i.e., resulting path conditions, identified by
ShadowJPF and ShadowJPF+ (see Table 1, 2, and 3). In almost
all cases ShadowJPF+ was able to identify the same or a greater
number of di↵ paths than ShadowJPF. The exception is the re-
sult for the subject Joda-Time, for which ShadowJPF identified
9 di↵ paths and ShadowJPF+ identified 6 di↵ paths. However,
ShadowJPF is a↵ected by the over-approximation mentioned in
Section 2.2, and hence, it identifies incorrectly three paths as di↵
paths. For the rest, ShadowJPF is often limited by the concrete
values, which constraint the current path condition at a diver-
gence point. Therefore, ShadowJPF+ can identify significantly
more di↵ paths and at the same time is more accurate because
it mitigates the over-approximation problem. Note that in our
experiments, ShadowJPF+ was able to find all possible di↵ paths
(except for the subjects marked with inf), since there was no
further bound on the exploration depth.

RQ1: Effectiveness

18Java Pathfinder Workshop 2019yannic.noller@hu-berlin.de

Problem Solution Evaluation SummaryFuture WorkBackground

per class, we manually combined a randomly chosen subset of
them to get complex mutants with multiple changes per class. Ad-
ditionally, we inspected several open source projects on GitHub
to find real regression bugs. In the Joda-Time library we found
the issue #3282, which fixes a regression bug that was introduced
with the fix for the issue #1903.

Subject Type Time [s] # States # Paths (di↵)
SJ SJ+ SJ SJ+ SJ SJ+

Rational.abs 1 ROR <1 <1 21 32 1 1
Rational.abs 2 ROR <1 <1 21 32 1 1
Rational.abs 3 ROR <1 <1 13 20 1 1
Rational.abs 4 ORU <1 <1 5 6 0 0
Rational.abs 5 ORU <1 <1 5 6 0 0
Rational.gcd 1 ROR <1 <1 42 220 0 0
Rational.gcd 2 ROR <1 <1 23 48 2 4
Rational.gcd 3 ROR <1 <1 40 234 3 3
Rational.gcd 4 STD <1 <1 43 223 3 3
Rational.gcd 5 ROR <1 <1 27 174 1 2
Rational.gcd 6 ROR <1 <1 27 610 1 2
Rational.gcd 7 ROR <1 <1 87 692 1 16
Rational.gcd 8 STD inf inf - - - -
Rational.gcd 9 ROR <1 <1 45 434 0 0
Rational.gcd 10 ROR <1 <1 57 626 3 48
Rational.gcd 11 ROR <1 <1 15 42 1 2
Rational.gcd 12 ROR <1 <1 104 308 3 6
Rational.gcd 13 ROR <1 <1 104 642 3 14
Rational.gcd 14 ROR <1 <1 43 236 1 6
Rational.gcd 15 AOR <1 <1 43 178 4 10
Rational.gcd 16 AOR <1 <1 39 170 4 10
Rational.gcd 17 AOR <1 1 60 342 8 36
Rational.gcd 18 STD <1 <1 37 166 2 6
Rational.gcd 19 AOR <1 4 49 198 5 18
Rational.gcd 20 AOR <1 <1 49 198 5 18
Rational.gcd 21 AOR 1 94 83 386 9 34
Rational.gcd 22 STD <1 <1 49 198 5 18
Rational.simplify 1 ROR <1 <1 55 284 4 6
Rational.simplify 2 ROR <1 <1 63 370 3 3
Rational.simplify 3 ROR <1 <1 71 252 4 6
Rational.simplify 4 ORU <1 <1 28 280 2 8
Rational.simplify 5 ROR <1 <1 42 364 0 1
Rational.simplify 6 ROR <1 <1 31 96 3 7
Rational.simplify 7 ROR <1 <1 63 366 4 4
Rational.simplify 8 STD <1 <1 19 355 1 4
Rational.simplify 9 ROR <1 <1 31 222 1 3
Rational.simplify 10 ROR <1 <1 73 770 1 3
Rational.simplify 11 ROR <1 <1 67 588 1 17
Rational.simplify 12 STD inf inf - - - -
Rational.simplify 13 ROR <1 1 45 578 0 1
Rational.simplify 14 ROR <1 <1 61 898 3 49
Rational.simplify 15 ROR <1 <1 15 74 1 3
Rational.simplify 16 ROR <1 <1 104 388 3 7
Rational.simplify 17 ROR <1 <1 104 674 3 15
Rational.simplify 18 ROR <1 <1 34 280 1 7
Rational.simplify 19 AOR <1 <1 47 274 4 11
Rational.simplify 20 AOR <1 <1 43 266 4 11
Rational.simplify 21 AOR <1 1 72 550 8 37
Rational.simplify 22 STD <1 <1 37 246 2 7
Rational.simplify 23 AOR <1 6 49 230 5 19
Rational.simplify 24 AOR <1 <1 49 230 5 19
Rational.simplify 25 AOR <1 95 83 418 9 35
Rational.simplify 26 STD <1 <1 49 230 5 19
Rational.simplify 27 AOR <1 <1 29 338 0 1
Rational.simplify 2 16 ROR2 <1 <1 138 420 6 9
Rational.simplify 2 27 ROR,AOR <1 <1 63 370 3 3
Rational.simplify 3 11 ROR2 <1 <1 108 368 3 12
Rational.simplify 16 27 ROR,AOR <1 <1 104 388 3 7
Rational.simplify 2 16 27 ROR2,AOR <1 <1 138 420 6 9

Table 1: Experimental results for the Rational subjects.

ShadowJPF needs initial test inputs, so we generated test inputs
that each test case covers at least one change-statement, similar
to the assumption in [13]. For ShadowJPF+ we do not need these
concrete inputs. We added the change-annotations to the mutants
and executed them with both: ShadowJPF and ShadowJPF+.
Afterwards, we manually compared the resulting path conditions.
For our experiments we disabled the guided symbolic exploration
because due to the small sizes of the mutated subjects it did not
provide any time benefit.

2
https://github.com/JodaOrg/joda-time/issues/328

3
https://github.com/JodaOrg/joda-time/issues/190

Subject Type Time [s] # States # Paths (di↵)
SJ SJ+ SJ SJ+ SJ SJ+

WBS.update 1 ROR8 <1 1 70 880 2 24
WBS.update 2 ROR8 <1 <1 73 428 2 12
WBS.update 3 ROR7,AOR <1 <1 51 554 2 24
WBS.update 4 ROR6,AOR, STD <1 <1 97 618 4 18
WBS.update 5 ROR7,AOR <1 <1 109 266 6 12
WBS.update 6 ROR8 <1 <1 135 632 6 24
WBS.update 7 ROR6,AOR, STD <1 <1 123 618 6 28
WBS.update 8 ROR5,AOR2, STD <1 <1 147 232 8 8
WBS.update 9 ROR5,AOR2, STD <1 <1 89 576 4 12
WBS.update 10 ROR7,AOR <1 <1 118 914 4 7
WBS.launch 1 ROR8 4 121 11724 281080 576 13824
WBS.launch 2 ROR8 <1 2 1083 12944 36 432
WBS.launch 3 ROR7,AOR 7 120 20701 248354 1152 13824
WBS.launch 4 ROR6,AOR, STD 3 47 10208 111876 628 5472
WBS.launch 5 ROR7,AOR <1 1 1717 3506 111 222
WBS.launch 6 ROR8 11 76 32508 195176 1600 9600
WBS.launch 7 ROR6,AOR, STD 7 146 22414 313930 1152 16128
WBS.launch 8 ROR5,AOR2, STD 2 14 7313 15232 512 896
WBS.launch 9 ROR5,AOR2, STD 3 56 7585 143819 745 7109
WBS.launch 10 ROR7,AOR 30 193 48460 497118 2404 15204

Table 2: Experimental results for the WBS subjects.

Subject Time [s] # States # Paths (di↵)
SJ SJ+ SJ SJ+ SJ SJ+

Foo <1 <1 11 18 1 2
Joda-Time <1 <1 37 40 9 (6) 6

Table 3: Experimental results for the motivating example
and the presented Joda-Time regression bug.

Infrastructure: The experiments were conducted on a machine
with macOS 10.14.6 (2.9GHz Intel Core i5, 16 GB RAM). As
constraint solver for the symbolic execution we use Z3 [4] with
the version 4.5.0. We used Java v1.8.0 211 and configured the
symbolic execution with an unbounded depth limit and a timeout
of one hour.

4.1 Results and Analysis
Tables 1 and 2 show the detailed results of the mutant evalua-
tion for the Rational and WBS subjects. The first column names
the corresponding class and method that were tested together
with an id, which specifies each mutant. Column Type con-
tains the mutation change type. The following columns describe
the execution time in seconds, the number of visited states dur-
ing the symbolic exploration, and the number of resulting path
conditions for ShadowJPF (SJ) and our extension ShadowJPF+

(SJ+). Table 1 contains two mutations (Rational.gcd 8 and Ra-
tional.simplify 12), for which the mutated version results in an
infinite loop, hence, we marked them with inf and omitted them
from the analysis. We also present in Table 3 the detailed execu-
tion results for the method foo() from Listing 1 and the Joda-
Time regression bug.

RQ.1 E↵ectiveness: In order to answer RQ.1 we compared the
number of test cases, i.e., resulting path conditions, identified by
ShadowJPF and ShadowJPF+ (see Table 1, 2, and 3). In almost
all cases ShadowJPF+ was able to identify the same or a greater
number of di↵ paths than ShadowJPF. The exception is the re-
sult for the subject Joda-Time, for which ShadowJPF identified
9 di↵ paths and ShadowJPF+ identified 6 di↵ paths. However,
ShadowJPF is a↵ected by the over-approximation mentioned in
Section 2.2, and hence, it identifies incorrectly three paths as di↵
paths. For the rest, ShadowJPF is often limited by the concrete
values, which constraint the current path condition at a diver-
gence point. Therefore, ShadowJPF+ can identify significantly
more di↵ paths and at the same time is more accurate because
it mitigates the over-approximation problem. Note that in our
experiments, ShadowJPF+ was able to find all possible di↵ paths
(except for the subjects marked with inf), since there was no
further bound on the exploration depth.

per class, we manually combined a randomly chosen subset of
them to get complex mutants with multiple changes per class. Ad-
ditionally, we inspected several open source projects on GitHub
to find real regression bugs. In the Joda-Time library we found
the issue #3282, which fixes a regression bug that was introduced
with the fix for the issue #1903.

Subject Type Time [s] # States # Paths (di↵)
SJ SJ+ SJ SJ+ SJ SJ+

Rational.abs 1 ROR <1 <1 21 32 1 1
Rational.abs 2 ROR <1 <1 21 32 1 1
Rational.abs 3 ROR <1 <1 13 20 1 1
Rational.abs 4 ORU <1 <1 5 6 0 0
Rational.abs 5 ORU <1 <1 5 6 0 0
Rational.gcd 1 ROR <1 <1 42 220 0 0
Rational.gcd 2 ROR <1 <1 23 48 2 4
Rational.gcd 3 ROR <1 <1 40 234 3 3
Rational.gcd 4 STD <1 <1 43 223 3 3
Rational.gcd 5 ROR <1 <1 27 174 1 2
Rational.gcd 6 ROR <1 <1 27 610 1 2
Rational.gcd 7 ROR <1 <1 87 692 1 16
Rational.gcd 8 STD inf inf - - - -
Rational.gcd 9 ROR <1 <1 45 434 0 0
Rational.gcd 10 ROR <1 <1 57 626 3 48
Rational.gcd 11 ROR <1 <1 15 42 1 2
Rational.gcd 12 ROR <1 <1 104 308 3 6
Rational.gcd 13 ROR <1 <1 104 642 3 14
Rational.gcd 14 ROR <1 <1 43 236 1 6
Rational.gcd 15 AOR <1 <1 43 178 4 10
Rational.gcd 16 AOR <1 <1 39 170 4 10
Rational.gcd 17 AOR <1 1 60 342 8 36
Rational.gcd 18 STD <1 <1 37 166 2 6
Rational.gcd 19 AOR <1 4 49 198 5 18
Rational.gcd 20 AOR <1 <1 49 198 5 18
Rational.gcd 21 AOR 1 94 83 386 9 34
Rational.gcd 22 STD <1 <1 49 198 5 18
Rational.simplify 1 ROR <1 <1 55 284 4 6
Rational.simplify 2 ROR <1 <1 63 370 3 3
Rational.simplify 3 ROR <1 <1 71 252 4 6
Rational.simplify 4 ORU <1 <1 28 280 2 8
Rational.simplify 5 ROR <1 <1 42 364 0 1
Rational.simplify 6 ROR <1 <1 31 96 3 7
Rational.simplify 7 ROR <1 <1 63 366 4 4
Rational.simplify 8 STD <1 <1 19 355 1 4
Rational.simplify 9 ROR <1 <1 31 222 1 3
Rational.simplify 10 ROR <1 <1 73 770 1 3
Rational.simplify 11 ROR <1 <1 67 588 1 17
Rational.simplify 12 STD inf inf - - - -
Rational.simplify 13 ROR <1 1 45 578 0 1
Rational.simplify 14 ROR <1 <1 61 898 3 49
Rational.simplify 15 ROR <1 <1 15 74 1 3
Rational.simplify 16 ROR <1 <1 104 388 3 7
Rational.simplify 17 ROR <1 <1 104 674 3 15
Rational.simplify 18 ROR <1 <1 34 280 1 7
Rational.simplify 19 AOR <1 <1 47 274 4 11
Rational.simplify 20 AOR <1 <1 43 266 4 11
Rational.simplify 21 AOR <1 1 72 550 8 37
Rational.simplify 22 STD <1 <1 37 246 2 7
Rational.simplify 23 AOR <1 6 49 230 5 19
Rational.simplify 24 AOR <1 <1 49 230 5 19
Rational.simplify 25 AOR <1 95 83 418 9 35
Rational.simplify 26 STD <1 <1 49 230 5 19
Rational.simplify 27 AOR <1 <1 29 338 0 1
Rational.simplify 2 16 ROR2 <1 <1 138 420 6 9
Rational.simplify 2 27 ROR,AOR <1 <1 63 370 3 3
Rational.simplify 3 11 ROR2 <1 <1 108 368 3 12
Rational.simplify 16 27 ROR,AOR <1 <1 104 388 3 7
Rational.simplify 2 16 27 ROR2,AOR <1 <1 138 420 6 9

Table 1: Experimental results for the Rational subjects.

ShadowJPF needs initial test inputs, so we generated test inputs
that each test case covers at least one change-statement, similar
to the assumption in [13]. For ShadowJPF+ we do not need these
concrete inputs. We added the change-annotations to the mutants
and executed them with both: ShadowJPF and ShadowJPF+.
Afterwards, we manually compared the resulting path conditions.
For our experiments we disabled the guided symbolic exploration
because due to the small sizes of the mutated subjects it did not
provide any time benefit.

2
https://github.com/JodaOrg/joda-time/issues/328

3
https://github.com/JodaOrg/joda-time/issues/190

Subject Type Time [s] # States # Paths (di↵)
SJ SJ+ SJ SJ+ SJ SJ+

WBS.update 1 ROR8 <1 1 70 880 2 24
WBS.update 2 ROR8 <1 <1 73 428 2 12
WBS.update 3 ROR7,AOR <1 <1 51 554 2 24
WBS.update 4 ROR6,AOR, STD <1 <1 97 618 4 18
WBS.update 5 ROR7,AOR <1 <1 109 266 6 12
WBS.update 6 ROR8 <1 <1 135 632 6 24
WBS.update 7 ROR6,AOR, STD <1 <1 123 618 6 28
WBS.update 8 ROR5,AOR2, STD <1 <1 147 232 8 8
WBS.update 9 ROR5,AOR2, STD <1 <1 89 576 4 12
WBS.update 10 ROR7,AOR <1 <1 118 914 4 7
WBS.launch 1 ROR8 4 121 11724 281080 576 13824
WBS.launch 2 ROR8 <1 2 1083 12944 36 432
WBS.launch 3 ROR7,AOR 7 120 20701 248354 1152 13824
WBS.launch 4 ROR6,AOR, STD 3 47 10208 111876 628 5472
WBS.launch 5 ROR7,AOR <1 1 1717 3506 111 222
WBS.launch 6 ROR8 11 76 32508 195176 1600 9600
WBS.launch 7 ROR6,AOR, STD 7 146 22414 313930 1152 16128
WBS.launch 8 ROR5,AOR2, STD 2 14 7313 15232 512 896
WBS.launch 9 ROR5,AOR2, STD 3 56 7585 143819 745 7109
WBS.launch 10 ROR7,AOR 30 193 48460 497118 2404 15204

Table 2: Experimental results for the WBS subjects.

Subject Time [s] # States # Paths (di↵)
SJ SJ+ SJ SJ+ SJ SJ+

Foo <1 <1 11 18 1 2
Joda-Time <1 <1 37 40 9 (6) 6

Table 3: Experimental results for the motivating example
and the presented Joda-Time regression bug.

Infrastructure: The experiments were conducted on a machine
with macOS 10.14.6 (2.9GHz Intel Core i5, 16 GB RAM). As
constraint solver for the symbolic execution we use Z3 [4] with
the version 4.5.0. We used Java v1.8.0 211 and configured the
symbolic execution with an unbounded depth limit and a timeout
of one hour.

4.1 Results and Analysis
Tables 1 and 2 show the detailed results of the mutant evalua-
tion for the Rational and WBS subjects. The first column names
the corresponding class and method that were tested together
with an id, which specifies each mutant. Column Type con-
tains the mutation change type. The following columns describe
the execution time in seconds, the number of visited states dur-
ing the symbolic exploration, and the number of resulting path
conditions for ShadowJPF (SJ) and our extension ShadowJPF+

(SJ+). Table 1 contains two mutations (Rational.gcd 8 and Ra-
tional.simplify 12), for which the mutated version results in an
infinite loop, hence, we marked them with inf and omitted them
from the analysis. We also present in Table 3 the detailed execu-
tion results for the method foo() from Listing 1 and the Joda-
Time regression bug.

RQ.1 E↵ectiveness: In order to answer RQ.1 we compared the
number of test cases, i.e., resulting path conditions, identified by
ShadowJPF and ShadowJPF+ (see Table 1, 2, and 3). In almost
all cases ShadowJPF+ was able to identify the same or a greater
number of di↵ paths than ShadowJPF. The exception is the re-
sult for the subject Joda-Time, for which ShadowJPF identified
9 di↵ paths and ShadowJPF+ identified 6 di↵ paths. However,
ShadowJPF is a↵ected by the over-approximation mentioned in
Section 2.2, and hence, it identifies incorrectly three paths as di↵
paths. For the rest, ShadowJPF is often limited by the concrete
values, which constraint the current path condition at a diver-
gence point. Therefore, ShadowJPF+ can identify significantly
more di↵ paths and at the same time is more accurate because
it mitigates the over-approximation problem. Note that in our
experiments, ShadowJPF+ was able to find all possible di↵ paths
(except for the subjects marked with inf), since there was no
further bound on the exploration depth.

RQ2: Performance

19Java Pathfinder Workshop 2019yannic.noller@hu-berlin.de

Problem Solution Evaluation SummaryFuture WorkBackground

Shadow Symbolic Execution:

+ scalability

- strongly depends on concrete inputs

Complete Shadow Symbolic Execution:

+ no dependence on concrete inputs

- scalability issue

+

git clone https://github.com/hub-se/jpf-shadow-plus.git

Complete Shadow Symbolic
Execution with Java PathFinder

Java Pathfinder Workshop 2019yannic.noller@hu-berlin.de

Problem Solution Evaluation SummaryFuture WorkBackground

Regression Testing

4Java Pathfinder Workshop 2019yannic.noller@hu-berlin.de

1 int foo (int x) {

2 int y;

3 if (x < 0) {

4- y = -x;

4+ y = x * x;

5 } else {

6 y = 2 * x;

7 }

8+ y = y + 1;

9 if (y > 1) {

10 return 0;

11 } else {

12 if (y == 1)

13 assert(false);

14 }

15 return 1;

16 }

assertion error

for x=-1 is fixed

(returns 0)

introduced new

assertion error

for x=0
(previously returned 1)
→ Regression Bug

Figure 4: A high-level overview of shadow symbolic execution.

program under test (alternatively, the old version and the
patch), and ii) the program’s test suite. The output is a set
of inputs that expose divergent behaviour between versions,
triggering either regression bugs or expected divergences.
We further divide these divergent behaviours into four sub-
categories. First, divergences that lead to generic errors (e.g.
memory errors) only in the new version are clear regression
bugs that should be fixed. Second, divergences that lead
to generic errors only in the old version are expected diver-
gences that witness the fix of that error. Third, divergences
that propagate to the output are of interest to developers,
because they can be used to quickly assess whether they are
intended changes or regression errors. Finally, divergences
that do not lead to any noticeable di↵erences could still be
of interest to developers, who could add the corresponding
inputs to the application’s test suite.

In the first step of our approach, we annotate the patches
as illustrated in Figure 3, in order to unify the old and the
new version into a single program that incorporates them
both (§3.1). Next, we select from the test suite those test
cases that touch the patch. We then perform shadow sym-
bolic execution and generate inputs that expose divergent
behaviour (§3.2). Finally, we run both versions natively on
all divergent inputs using enhanced cross-version checks and
identify those that trigger errors or output di↵erences (§3.3).

3.1 Unifying versions via patch annotations
Our approach to executing both the old and the new ver-

sion of the program in the same symbolic execution instance
is to enforce them to proceed in lockstep until they diverge
in control flow. This is done by creating a single unified
program in which the two versions are merged via change()
annotations, as we have shown on line 4 in Figure 3. Map-
ping program elements across versions [15] is a di�cult task,
as in the extreme, the two versions could be arbitrarily dif-
ferent programs. However, in practice the process can be
made su�ciently precise and furthermore automated using
various heuristics, as shown by recent work [16,23].

We currently add these annotations manually, following
the annotation patterns discussed below; however, we be-
lieve many patterns could be applied automatically, although
we leave this for future work.

Our annotations use the macro change(), which resem-
bles a function call with two arguments: the first argument
represents the code expression from the old version and the
second argument the corresponding expression from the new
version. One key property is the ability to run the old ver-
sion by replacing change() with its first argument, and the
new version by replacing it with its second argument.

Writing these annotations was easier than we initially
expected—we started by targeting very small patches (1-2

lines of code), but ended up annotating large patches of up
to several hundred lines of code. Below, we discuss the main
annotation patterns that we follow, in the order in which we
typically apply them.

1. Modifying an rvalue expression. When an expression E1
is changed to E2, the annotation is simply change(E1,
E2). As a general principle, we always push the change()
annotations as deep inside the expression as possible.
This strategy optimises the sharing between the symbolic
stores of the two versions, and it also allows for various
optimisations, such as constant folding, to be performed
by the symbolic execution engine. Examples include:

(a) Changing the right-hand side of an assignment:

x = y + change(E1, E2);

(b) Changing an argument in a function call:

f(..., change(E1, E2) + len(s), ...);

(c) Changing a conditional expression:

if (change(E1, E2))
... code ...

In the patches we examined, we observed that developers
often change the control flow in the program by strength-
ening or weakening existing conditional expressions, i.e.
by adding or removing boolean clauses. For instance:

(d) Weakening a condition from A to A || B :

if (A || change(false, B))
... code ...

(e) Strengthening a condition from A to A && B :

if (A && change(true, B))
... code ...

We choose a di↵erent style of annotations for strengthen-
ing of a condition from A || B to B and for weakening a
condition from A && B to B:

(f) Strengthening a condition from A || B to B :

if (change(A || B, B))
... code ...

(g) Weakening a condition from A && B to B :

if (change(A && B, B))
... code ...

The reason for using this di↵erent style is to avoid the
introduction of spurious divergences. For example, if we
annotated a strengthening of a condition from A || B to
B as if (change(A, false)|| B), then if A is true
and B is also true, a divergence would be reported, even
though the two versions would take the same then side
of the branch. While this annotation might be preferable
when a stronger coverage criterion such as MC/DC [11]
is desired, in our experiments we prioritise divergences
that propagate to the output.

[Palikareva2016]

Shadow Symbolic Execution with Java PathFinder

Yannic Noller
Humboldt University of Berlin

yannic.noller@informatik.hu-berlin.de

Hoang Lam Nguyen
Humboldt University of Berlin

nguyenhx@informatik.hu-berlin.de

Minxing Tang
Humboldt University of Berlin

tangminx@informatik.hu-berlin.de

Timo Kehrer
Humboldt University of Berlin

timo.kehrer@informatik.hu-berlin.de

ABSTRACT
Regression testing ensures that a software system when it evolves
still performs correctly and that the changes introduce no unin-
tended side-e↵ects. However, the creation of regression test cases
that show divergent behavior needs a lot of e↵ort. A solution
is the idea of shadow symbolic execution, originally implemented
based on KLEE for programs written in C, which takes a unified
version of the old and the new program and performs symbolic
execution guided by concrete values to explore the changed behav-
ior. In this work, we apply the idea of shadow symbolic execution
to Java programs and, hence, provide an extension of the Java
PathFinder (JPF) project to perform shadow symbolic execution
on Java bytecode. The extension has been applied on several sub-
jects from the JPF test classes where it successfully generated test
inputs that expose divergences relevant for regression testing.

Keywords
Java PathFinder; Symbolic PathFinder; Symbolic Execution; Re-
gression Testcase Generation; Software Engineering

1. INTRODUCTION
One of the distinctive properties of real-world software is that it
evolves, since it has to be adapted to its continuously changing
environment. Software changes, usually referred to as patches,
typically fix incorrect behavior or introduce new functionality.
However, it is also known that these patches are prone to intro-
duce new errors [3, 10], which is why users are often hesitant to
update to the latest version.

To prevent this problem, regression testing is performed on the
modified program version in order to provide confidence that the
newly introduced software changes behave as expected and have
no unintended side-e↵ects. Since this is an expensive process, it is
important to select the appropriate test cases. For instance, sev-
eral regression testing techniques [4, 2] select and run a subset of
the test cases from the program’s existing test suite or automat-
ically generate test cases with high coverage of the changed code
[6]. However, even if the selected test cases achieve full statement
or full branch coverage of the patch code, they do not necessarily
exercise all new behaviors introduced by the patch.

To give an illustration, consider a patch that only changes the
conditional statement if(x > 5) to if(x > 10). The two test
cases x=0 and x=15 cover both sides of the branch, but the exe-
cution of these inputs is completely una↵ected by the patch since
they result in the same branching behavior in both program ver-
sions. On the other hand, if x is between 6 and 10 (inclusive),
the two program versions exhibit divergent behavior as they take
di↵erent sides of the branch.

Recently, Palikareva et al. [7] have introduced a dynamic sym-

bolic execution-based technique, which they refer to as shadow
symbolic execution. Their technique is designed to generate test
inputs that cover new program behaviors introduced by a patch.
Shadow symbolic execution works by executing both the old (bug-
gy) and new (patched) version in the same symbolic execution
instance, with the old version shadowing the new one. Therefore,
it is necessary to manually merge both programs into a change-
annotated, unified version. Based on such a unified version, the
technique detects divergences along the execution path of an in-
put that exercises the patch. Their tool Shadow, which we refer
to as ShadowKLEE , is implemented on top of the KLEE symbolic
execution engine [1].

Our novel implementation ShadowJPF , as an extension of the
Java PathFinder (JPF) [9], applies the idea of shadow symbolic
execution to Java bytecode and, hence, allows to detect diver-
gences in Java programs that expose new program behavior. The
application of our extension on various subjects from the JPF test
classes evaluate its test case generation capabilities.

2. SHADOW SYMBOLIC EXECUTION
Shadow symbolic execution [7] aims at generating test inputs that
cover the new program behaviors introduced by a patch. Their
approach takes as input the buggy and the patched version (say
old and new, respectively) and assumes an existing test suite.

1 int foo(int x){
2 int y;
3 i f (x < 0){
4 y = -x;
5 }
6 else{
7 y = 2 * x;
8 }

9+ y = -y;
10 i f (y > 1){
11 return 0;
12 } else {
13 i f (y == 1 || y <= -2){
14 assert(false);
15 }
16 }
17 return 1;
18 }

Listing 1: Toy example to show the approach of shadow
symbolic execution.

To give an illustration, consider the patch for the method foo()

in Listing 1. There is an additional assignment in line 9 for the
variable y that negates it to �y. This patch fixes the assertion
error (line 14) for x = �1, but it introduces a new assertion
error for, e.g., x = �2. Since the approach aims at generating
test cases for the di↵erent execution paths of the buggy and the

%0*�������������������������
IUUQ���EPJ�BDN�PSH������������������������

ACM SIGSOFT Software Engineering Notes Page 1 October 2017 Volume 42 Number 4

(Noller et al.; JPF 2017)

9Java Pathfinder Workshop 2019yannic.noller@hu-berlin.de

Complete Shadow Symbolic
Execution

12Java Pathfinder Workshop 2019yannic.noller@hu-berlin.de

Shadow Symbolic Execution strongly depends on concrete inputs

combines bounded symbolic execution with four-way forking1

2 exploration of diffTRUE/FALSE paths only for the new version

3 full exploration of sameTRUE/FALSE paths, as long as they can or have

reached a change

20

23Java Pathfinder Workshop 2019yannic.noller@hu-berlin.de

Shadow Symbolic Execution:

+ scalability

- strongly depends on concrete inputs

Complete Shadow Symbolic Execution:

+ no dependence on concrete inputs

- scalability issue

+

References
[Clarke1976] L. A. Clarke, "A System to Generate Test Data and Symbolically Execute Programs," in IEEE
Transactions on Software Engineering, vol. SE-2, no. 3, pp. 215-222, Sept. 1976. DOI: https://doi.org/
10.1109/TSE.1976.233817

[Just2011] Rene Just, Franz Schweiggert, and Gregory M. Kapfhammer. 2011. MAJOR: An efficient and
extensible tool for mutation analysis in a Java compiler. In Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software Engineering (ASE'11). IEEE Computer Society,
Washington, DC, USA, 612-615. DOI: http://dx.doi.org/10.1109/ASE.2011.6100138

[King1976] James C. King. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (July
1976), 385-394. DOI: http://dx.doi.org/10.1145/360248.360252

[Noller2018] Yannic Noller, Hoang Lam Nguyen, Minxing Tang, and Timo Kehrer. 2018. Shadow Symbolic
Execution with Java PathFinder. SIGSOFT Softw. Eng. Notes 42, 4 (January 2018), 1-5. DOI: https://doi.org/
10.1145/3149485.3149492

[Palikareva2016] Hristina Palikareva, Tomasz Kuchta, and Cristian Cadar. 2016. Shadow of a doubt:
testing for divergences between software versions. In Proceedings of the 38th International Conference on
Software Engineering (ICSE'16). ACM, New York, NY, USA, 1181-1192. DOI: https://doi.org/
10.1145/2884781.2884845

IJava Pathfinder Workshop 2019yannic.noller@hu-berlin.de

https://doi.org/10.1109/TSE.1976.233817
https://doi.org/10.1109/TSE.1976.233817
http://dx.doi.org/10.1109/ASE.2011.6100138
http://dx.doi.org/10.1145/360248.360252
https://doi.org/10.1145/3149485.3149492
https://doi.org/10.1145/3149485.3149492
https://doi.org/10.1145/2884781.2884845
https://doi.org/10.1145/2884781.2884845

