
QFuzz: Quantitative Fuzzing for Side Channels

Yannic Noller

yannic.noller@acm.org
saeid@utep.edu 1QFuzz: Quantitative Fuzzing for Side Channels

Saeid Tizpaz-Niari

ISSTA 2021

Detection / Quantification of
Side-Channel Vulnerabilities

Research Problem State of the Art Our Solution Example Evaluation Summary

yannic.noller@acm.org
saeid@utep.edu 2QFuzz: Quantitative Fuzzing for Side Channels

QFuzz: �antitative Fuzzing for Side Channels ISSTA ’21, July 11–17, 2021, Virtual, Denmark

stringEquals (Original Jetty, v1)

boolean stringEquals(String s1, String s2) { .
if (s1 == s2)
return true;

if (s1 == null || s2 == null ||
s1.length () != s2.length ())

return false;
for (int i = 0; i < s1.length (); ++i)
if (s1.charAt(i) != s2.charAt(i))
return false;

return true;
}

stringEquals (Current Jetty, v4)

boolean stringEquals(String s1 , String s2) {
if (s1 == s2) return true;
if (s1 == null || s2 == null)
return false;

boolean result = true;
int l1 = s1.length ();
int l2 = s2.length ();
for (int i = 0; i < l2; ++i)
result &= s1.charAt(i%l1) == s2.charAt(i));

return result && l1 == l2;
}

stringEquals (Safe Jetty, v5)

boolean stringEquals(String s1, String s2) { .
if (s1 == s2) return true;
if (s1 == null || s2 == null)
return false;

int l1 = s1.length ();
int l2 = s2.length ();
if(l2 == 0){ return l1 == 0}
int result |= l1 - l2;
for (int i = 0; i < l2; ++i){
int r = ((i - l1) >>> 31) * i;
result |= s1.charAt(r) ^ s2.charAt(i);

}
return result == 0;

}

Equals (Unsafe Spring-Security)

boolean Equals(String s1 , String s2) { .
if (s1 == null || s2 == null)
return false;

byte[] s1B = s1.getBytes(�UTF -8�);
byte[] s2B = s2.getBytes(�UTF -8�);
int len1 = s1B.length;
int len2 = s2B.length;
if (len1 != len2)
return false;

int result = 0;
for (int i = 0; i < len2; i++)
result |= s1B[i] ^ s2B[i];

return result == 0;
}

Figure 2: String equality in Eclipse Jetty (s1 secret, s2 public). Top-Left: The code snippet is the original implementation for
the secret comparison that contains a strong side channel. Top-Right: The code is the current version that has been developed
to �x the side channel, but still leaks some information. Bottom-Left: The code snippet is a proposed safe implementation.
Bottom-Right: String equality in Spring-Security that leak whether the length of strings is matching.

Finally, we consider an unsafe variant of password matching from
Spring-Security as shown in Figure 2 (bottom-right). We study
the feasibility of side channels in these four implementations and
apply QF��� to estimate the amount of information leaks using the
number of partitions.

Example Parameters. We consider = 100 and n = 1 as default
con�guration parameters. We set the length of the secret and the
public guess to be the same and �xed to 16 characters. We run
QF��� 30 times on each variant, where each run is for 30 minutes.
We report the maximum number of partitions (:) and the cost
di�erences in bytecode between two closest partitions (X). The
detailed results for can be found in Table 1 and Table 3.

First Variant of Je�y. Figure 2 (top-left) shows the �rst variant,
for which QF��� discovers 17 classes of observations (: = 17).
Each partition is at least 3 bytecodes far from any other partition
(X = 3). Since we �x the length, the number of partitions re�ect
side-channel observations related to the content of secret inputs.
We �nd that each partition shows the number of characters in
the pre�x of secrets that match with the guess. Since there are 16
characters, there can be 17 partitions ranging from no pre�x match
to all 16 characters match. This implementation is known to be
vulnerable to adaptive side channels where an attacker can use the

cost observations to compromise a pre�x of a secret password in
each step of the attack. The outcome of QF��� indirecly indicates
the feasibility of adaptive attacks, while they are not the main focus.

Second Variant of Je�y (current implementation). We consider the
current implementation in Jetty as shown in Figure 2 (top-right).
In this case, QF��� detects 9 partitions where each partition is
at least 1 bytecode far from any others. This analysis shows that
the �x improved the security and reduced the strength of leaks as
compared to the �rst variant. SinceQF��� foundmultiple partitions,
however, we conclude that this variant is not completely safe. To
understand the issue, we analyze the corresponding instructions
generated by J��� Virtual Machine (JVM). The analysis shows
the equal operator (“==”) in the loop body is optimized by JVM
and translated to a conditional jump instruction (if_icmpne) if the
comparison is not successful and an unconditional jump instruction
otherwise. This translation introduces an imbalance comparison
where the unconditional jump includes a single extra bytecode
instruction as compared to the conditional jump.With 16 characters,
the bytecode di�erences, range from 0 to 16, are partitioned into 9
classes with n = 1.

Third Variant of Je�y (OpenJDK [28]). We take a password matching
algorithm from OpenJDK [28] that explicitly uses “xor” operation

Side Channel Vulnerability
• leackage of secret data
• software side-channels
• observables (e.g., execution time)

conditional early return
causes leakage

Detection vs Quantification

Is there a vulnerability?
⇔

How much information can be leaked?

State of the Art
Research Problem State of the Art Our Solution Example Evaluation Summary

yannic.noller@acm.org
saeid@utep.edu 3QFuzz: Quantitative Fuzzing for Side Channels

Precise Detection of Side-Channel Vulnerabilities using
�antitative Cartesian Hoare Logic

Jia Chen
University of Texas at Austin

Austin, Texas
jchen@cs.utexas.edu

Yu Feng
University of Texas at Austin

Austin, Texas
yufeng@cs.utexas.edu

Isil Dillig
University of Texas at Austin

Austin, Texas
isil@cs.utexas.edu

ABSTRACT
This paper presents T�����, an end-to-end static analysis tool for
�nding resource-usage side-channel vulnerabilities in Java appli-
cations. We introduce the notion of �-bounded non-interference,
a variant and relaxation of Goguen and Meseguer’s well-known
non-interference principle. We then present Quantitative Cartesian
Hoare Logic (QCHL), a program logic for verifying �-bounded non-
interference. Our tool, T�����, combines automated reasoning in
CHL with lightweight static taint analysis to improve scalability.
We evaluate T����� on well known Java applications and demon-
strate that T����� can �nd unknown side-channel vulnerabilities
in widely-used programs. We also show that T����� can verify
the absence of vulnerabilities in repaired versions of vulnerable
programs and that T����� compares favorably against B�����, a
state-of-the-art static analysis tool for �nding timing side channels
in Java applications.

CCS CONCEPTS
• Security and privacy→ Logic and veri�cation; Software se-
curity engineering; • Theory of computation → Automated
reasoning;

KEYWORDS
vulnerability detection; side channels; static analysis; veri�cation

1 INTRODUCTION
Side channel attacks allow an adversary to infer security-sensitive
information of a system by observing its external behavior. For in-
stance, in the case of timing side channels, an attacker can learn prop-
erties of a secret (e.g., user’s password) by observing the time it takes
to perform some operation (e.g., password validation). Similarly,
compression side channel attacks allow adversaries to glean con�-
dential information merely by observing the size of the compressed
data (e.g., HTTP response). Numerous research papers and several
real-world exploits have shown that such side channel attacks are
both practical and harmful. For instance, side channels have been

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/10.1145/3133956.3134058

used to infer con�dential data involving user accounts [26, 38],
cryptographic keys [5, 19, 45], geographic locations [62], and medi-
cal data [22]. Recent work has shown that side channels can also
lead to information leakage in cyber-physical systems [23].

Side channel attacks are made possible due to the presence of
an underlying vulnerability in the system. For example, timing
attacks are feasible because the application exhibits di�erent timing
characteristics based on some properties of the secret. In general,
the most robust defense against side-channel attacks is to eradicate
the underlying vulnerabilities by ensuring that the resource usage
of the program (time, space, power etc.) does not vary with respect
to the secret. Unfortunately, it can be challenging to write programs
in away that follows this discipline, and side-channel vulnerabilities
continue to be uncovered on a regular basis in real-world security-
critical systems [5, 19, 36, 68].

Our goal in this paper is to help programmers develop side-
channel-free applications by automatically analyzing correlations
between variations in resource usage and di�erences in security-
sensitive data. In particular, given a program P and a “tolerable"
resource deviation � , we would like to verify that the resource usage
of P does not vary by more than � no matter what the value of the
secret. Following the terminology of Goguen and Meseguer [34],
we refer to this property as �-bounded non-interference. Intuitively,
a program that violates �-bounded non-interference for even large
values of � exhibits signi�cant secret-induced di�erences in re-
source usage.

The problem of verifying �-bounded non-interference is chal-
lenging for at least two reasons: First, the property that we would
like to verify is an instance of a so-called 2-safety property [66] that
requires reasoning about all possible interactions between pairs of
program executions. Said di�erently, a witness to the violation of
�-bounded interference consists of a pair of program runs on two
di�erent secrets. Unlike standard safety properties that have been
well-studied in veri�cation literature and for which many auto-
mated tools exist, checking 2-safety is known to be a much harder
problem. Furthermore, while checking 2-safety can in principle be
reduced to standard safety via so-called product construction [12, 14]
such a transformation either causes a blow-up in program size [12],
thereby resulting in scalability problems, or yields a program that
is practically very di�cult to verify [14].

In this work, we solve these challenges by combining relatively
lightweight static taint analysis with more precise relational veri�-
cation techniques for reasoning about k-safety (i.e., properties that
concern interactions between k program runs). Speci�cally, our
approach �rst uses taint information to identify so-called hot spots,
which are program fragments that have the potential to exhibit
a secret-induced imbalance in resource usage. We then use much

Session D3: Logical Side Channels CCS’17, October 30-November 3, 2017, Dallas, TX, USA

875

Themis

Decomposition Instead of Self-Composition for k-Safety

Timos Antopoulos, Paul Gazzillo, Michael Hicks†, Eric Koskinen, Tachio Terauchi‡, and Shiyi Wei†

Yale University † University of Maryland ‡ JAIST

Abstract

We describe a novel technique for proving k-safety prop-
erties (non-interference, determinism, etc.) via a decompo-
sition that enables one to leverage non-relational reasoning
techniques. The key is the inter-operation of the following
principles. First, we observe that many k-safety properties
of interest have a particular structure that we call -quotient
partitionability where is a k-ary formula. Second, we de-
velop a partitioning strategy of execution traces based on
the k-safety property � of interest such that if holds for
k traces then they must be in the same partition. Finally,
within a partition component Ti, we observe that we can
prove k-safety by instead proving a universal property: all
traces within the partition satisfy some common property Pi,
chosen to be strong enough that it implies the k-safety prop-
erty � of any k-tuple of traces in components Ti.

We apply this strategy to the task of discovering timing
side channels. A key feature of our approach is a demand-
driven partitioning strategy that uses high/low-annotated
regex-like trails to reason about one partition component
of execution traces at a time. We have applied our technique
in a prototype implementation tool called Blazer, based on
WALA, PPL, Z3, and the brics automaton library. We have
proved non-interference of (or synthesized an attack specifi-
cation for) 25 programs written in Java bytecode, including
7 classic examples from the literature, and 6 examples ex-
tracted from the DARPA STAC challenge problems.

1. Introduction

Validating a k-safety property is a difficult problem. Such
a property involves k runs of a program and, consequently,
validation requires establishing relationships between k dif-
ferent execution traces. One example property we are inter-
ested in is the absence of timing channels. This is a 2-safety
property: we want to show that no variation in timing can be
observed in any pair of traces whose computations use the
same public inputs but differing secrets, e.g., passwords or
encryption keys. In short, we want secrets’ values and tim-
ing to be uncorrelated.

It seems appealing to leverage the success of abstract in-
terpretation. Abstract interpretation-based tools enjoy rigor-
ous guarantees and provide formal proofs of various safety
and liveness properties. They also are efficient. Implementa-

tions such as ASTRÉE and INTERPROC are able to validate
properties of large C programs.

Abstract interpretation-based techniques focus on single
executions, but to prove k-safety properties we need to re-
late multiple executions. A clever way to do this is to em-
ploy self-composition [3, 23]: To reason about k runs of a
program, we can concatenate k copies of it (with variables
suitably renamed) and then assert a property that relates vari-
ables in different copies. For our timing channel property, we
could concatenate the program with itself, require that public
inputs to both copies be the same, and then assert that exe-
cution counters inserted for each copy are (approximately)
equal at the conclusion, despite allowed variation of secret
inputs. Self-composition, including clever improvements on
the basic idea [4], can be expensive due to state space explo-
sion. More recently, Sousa and Dillig [22] proposed Carte-
sian Hoare Logic (CHL) which allows stating and proving k-
wise relational properties. The structure of the logic permits
more efficient validation. Nonetheless, even CHL relies, at
least implicitly, on making k copies of the program, which
means that invariants are split across the product program
and key information is lost during fixpoint computation.

This paper. We depart from the composition-based strate-
gies and instead establish a novel decomposition methodol-
ogy that has the potential to check some k-safety properties
more efficiently than past work. It involves an idea we call
 -quotient partitionability, which we now explain.

Formally, a k-safety property [6, 23] can be stated as
follows. Let C be a program, and JCK be the set of exe-
cution traces of C. Then, a k-safety property has the form
8⇡1, . . . ,⇡k 2 JCKk. �(⇡1, . . . ,⇡k). For timing channels (a
2-safety property), �SC would have the form: in(⇡1) =low

in(⇡2)) time(⇡1) ⇡ time(⇡2). That is, if the public (i.e.,
low security) input variables of the two traces are the same
(while the secrets can vary arbitrarily), then the observed
running time is the same (up to the limits of the observer).

Proving a property � using our approach has three steps:

1. Define a quotient formula over k traces ⇡1, ...,⇡k. For
side-channel freedom, we let quotient SC(⇡1,⇡2) ,
in(⇡1) =low in(⇡2).

2. Define a method of decomposing sets of execution traces
of program C into a -quotient partition T. Formally, the

1 2016/11/16

Blazer

DifFuzz

Multi-run side-channel analysis using
Symbolic Execution and Max-SMT

Corina S. Păsăreanu
Carnegie Mellon University, NASA Ames

Moffet Field, CA, USA
corina.s.pasareanu@nasa.gov

Quoc-Sang Phan
Carnegie Mellon University

Moffet Field, CA, USA
sang.phan@sv.cmu.edu

Pasquale Malacaria
Queen Mary University of London

London, United Kingdom
p.malacaria@qmul.ac.uk

Abstract—Side-channel attacks recover confidential informa-
tion from non-functional characteristics of computations, such
as time or memory consumption. We describe a program anal-
ysis that uses symbolic execution to quantify the information
that is leaked to an attacker who makes multiple side-channel
measurements. The analysis also synthesizes the concrete public
inputs (the “attack”) that lead to maximum leakage, via a
novel reduction to Max-SMT solving over the constraints col-
lected with symbolic execution. Furthermore model counting and
information-theoretic metrics are used to compute an attacker’s
remaining uncertainty about a secret after a certain number
of side-channel measurements are made. We have implemented
the analysis in the Symbolic PathFinder tool and applied it in
the context of password checking and cryptographic functions,
showing how to obtain tight bounds on information leakage under
a small number of attack steps.

Index Terms—Side-Channel Attacks; Quantitative Information
Flow; Cryptography; Multi-run Security; Symbolic Execution;
Satisfiability Modulo Theories; Max-SMT

I. INTRODUCTION

Side-channel attacks recover secret inputs to programs from
non-functional characteristics of computations, such as time
consumed, number of memory accesses or size of output
files. Side-channel attacks have been shown to pose serious
threats by recovering cryptographic keys, e.g. when using the
well known RSA encryption/decryption algorithm [1], and
private information about users, e.g. as with commonly used
algorithms for data compression [2].

We propose a symbolic execution approach for the auto-
matic analysis of software that computes quantitative bounds
on the amount of information that can be leaked via side-
channel attacks. Technically we use the fact that the amount
of leaked information corresponds to the number of different
possible side-channel observations, which we compute using
symbolic execution and model counting via a reduction to
symbolic quantitative information flow analysis (QIF)[3], [4].
The analysis is parametrized by a cost model which allows
us to obtain side-channel measurements (time, memory, bytes
written to a file, etc.) from the execution of bytecode instruc-
tions. The “observables” are the values for the cost computed
for each path in the analyzed program. Furthermore we provide
a method for automatically deriving the public user input that
results into maximum leakage by using weighted Max-SMT
solving for which efficient procedures exist [5].

Our key insight is that Max-SMT solving can be used to
obtain the maximal assignment over the set of clauses obtained
with symbolic execution (i.e. any other assignment satisfies
less clauses) and this corresponds to the largest number of
observables that can be reached by a particular public input,
hence is the maximal leakage: any other choice of public input
would result in less observables. We show experimentally
that this new Max-SMT encoding can be more efficient than
established approaches based on bounded model checking over
program self-compositions [6] or on enumerating over the
concrete values.

Our Max-SMT approach generalizes naturally over
multiple-run side-channel attacks where we use symbolic
execution to quantify the information revealed to an attacker
after multiple channel measurements made. This corresponds
to a typical scenario where an attacker makes multiple guesses
by invoking and measuring the execution of the program
multiple times on different public inputs to gradually uncover
a secret that is constant across program runs (such as the secret
key used in the RSA encryption/decryption algorithm). Max-
SMT solving is used to compute a sequence of public inputs
that lead to maximum leakage, exposing the vulnerability of
the program to multi-run attacks.

Furthermore we show how to use an extension of symbolic
execution, namely with quantitative reasoning [7], [8], to
compute precise values for information theoretic metrics such
as Shannon or Smith’s min entropy [9]. The technique uses
model counting over the constraints collected by symbolic
execution, to compute the probability of executing different
program paths (under a user-specified profile). Thus we can
compute an attacker’s remaining uncertainty about a secret
after a number (k) of side-channel measurements made. We
can also determine whether a secret is fully revealed after k
runs or whether a program keeps leaking information after k
runs etc.

We have implemented the analysis in the Symbolic
PathFinder tool and show how to use it to measure side-
channel vulnerabilities for Java bytecode programs in the
presence of non-adaptive attacks. Our approach is general
and can be implemented easily in other symbolic execution
tools targeting other languages. We discuss the application
of our approach in the context of password checking and

MaxLeak

Challenges
How to go beyond non-

interference?

How to avoid expensive
symbolic execution?

How to scale to larger programs?

How to provide guarantees for
vulnerability?

QFuzz: Workflow
Research Problem State of the Art Our Solution Example Evaluation Summary

yannic.noller@acm.org
saeid@utep.edu 8QFuzz: Quantitative Fuzzing for Side Channels

initial seed files

1
queue

2
trim input

3

mutate
repeatedly

4

mutated files that showed
(new) interesting behavior6

parse
input

5 mutant selection by input evaluation for
the instrumented program P

P[s1, y]
check for
improved
partitioning
or coverage

compute
partitions

P[s2, y]

P[sk, y]

a) #partitions k
b) minimum

distance !

c) program
coverage

…

c(s1, y),
cov1

c(s2, y),
cov2

c(s3, y),
covk

fuzzing driver

!"#!!,…,!",$ $"%&%(()&, + , … , ()', +) + (1 − 1().& ∗ ,)

Maximize number
of partitions

Maximize the difference
between the partitions

Quantification
Research Problem State of the Art Our Solution Example Evaluation Summary

yannic.noller@acm.org
saeid@utep.edu 4QFuzz: Quantitative Fuzzing for Side Channels

Information Leakage: min-entropy [Smith2009]
Assuming that the program P is deterministic and the
distribution over secret input Σ is uniform, then the
information leakage can be characterized 𝒍𝒐𝒈𝟐𝒌∗ (ε=0).

Problem Statement

maximum number
of classes in the
cost observations

𝒍𝒐𝒈𝟐 𝚺𝒀$𝒚∗

ε ≥ 0
Find set of secret values Σ and public
value y* that characterize the maximum
number of observation classes with the
highest distance 𝛿.

Partitioning
Algorithm

c(s1, y)
c(s2, y)

c(s3, y)
c(s4, y)

p2

p1

KDynamic &
Greedy

How to characterize
observation classes?

How to identify
such inputs?

1 2

Fuzzing

Threat Model
Attacker can pick an ideal public input to
compromise the secret value or some
properties of it in one try.

Background: Greybox Fuzzing
Research Problem State of the Art Our Solution Example Evaluation Summary

yannic.noller@acm.org
saeid@utep.edu 5QFuzz: Quantitative Fuzzing for Side Channels

initial seed files

1
queue

2
trim input

3

mutate
repeatedly

4

mutated files that showed (new)
interesting behavior6

5 mutant selection by input evaluation for
the instrumented program P

parse
input

execute
program P

Check for new
coverage or
program crashes
or timeouts

fuzzing driver

output

program
coverage

QFuzz: Workflow
Research Problem State of the Art Our Solution Example Evaluation Summary

yannic.noller@acm.org
saeid@utep.edu 6QFuzz: Quantitative Fuzzing for Side Channels

initial seed files

1
queue

2
trim input

3

mutate
repeatedly

4

mutated files that showed (new)
interesting behavior6

parse
input

5 mutant selection by input evaluation for
the instrumented program P

P[s1, y]
check for
improved
partitioning
or coverage

compute
partitions

P[s2, y]

P[sK, y]

a) #partitions k
b) minimum

distance 𝝳

c) program
coverage

…

c(s1, y),
cov1

c(s2, y),
cov2

c(s3, y),
covk

fuzzing driver

𝑚𝑎𝑥!!,…,!",$ 𝑃𝑎𝑟𝑡%(𝑐 𝑠&, 𝑦 , … , 𝑐 𝑠', 𝑦) + (1 − 𝑒().& ∗ ,)

Maximize number
of partitions

Maximize the difference
between the partitions

Research Problem State of the Art Our Solution Example Evaluation Summary

yannic.noller@acm.org
saeid@utep.edu 7QFuzz: Quantitative Fuzzing for Side Channels

KDynamic vs Greedy Partitioning
Time

ε

K = 1

Research Problem State of the Art Our Solution Example Evaluation Summary

yannic.noller@acm.org
saeid@utep.edu 7QFuzz: Quantitative Fuzzing for Side Channels

KDynamic vs Greedy Partitioning
Time

ε

K = 2

Research Problem State of the Art Our Solution Example Evaluation Summary

yannic.noller@acm.org
saeid@utep.edu 7QFuzz: Quantitative Fuzzing for Side Channels

KDynamic vs Greedy Partitioning
Time

ε

Find valid
partitions with

max. delta

𝞭

Time

<= ε

> ε

Find valid partitions
with guarantees;
simple and fast

K = 3

Example (K=100, ε=1, length=16, count=bytecode-instruction)

Research Problem State of the Art Our Solution Example Evaluation Summary

QFuzz: �antitative Fuzzing for Side Channels ISSTA ’21, July 11–17, 2021, Virtual, Denmark

stringEquals (Original Jetty, v1)

boolean stringEquals(String s1, String s2) { .
if (s1 == s2)
return true;

if (s1 == null || s2 == null ||
s1.length () != s2.length ())

return false;
for (int i = 0; i < s1.length (); ++i)
if (s1.charAt(i) != s2.charAt(i))
return false;

return true;
}

stringEquals (Current Jetty, v4)

boolean stringEquals(String s1, String s2) {
if (s1 == s2) return true;
if (s1 == null || s2 == null)
return false;

boolean result = true;
int l1 = s1.length ();
int l2 = s2.length ();
for (int i = 0; i < l2; ++i)
result &= s1.charAt(i%l1) == s2.charAt(i));

return result && l1 == l2;
}

stringEquals (Safe Jetty, v5)

boolean stringEquals(String s1, String s2) { .
if (s1 == s2) return true;
if (s1 == null || s2 == null)
return false;

int l1 = s1.length ();
int l2 = s2.length ();
if(l2 == 0){ return l1 == 0}
int result |= l1 - l2;
for (int i = 0; i < l2; ++i){
int r = ((i - l1) >>> 31) * i;
result |= s1.charAt(r) ^ s2.charAt(i);

}
return result == 0;

}

Equals (Unsafe Spring-Security)

boolean Equals(String s1, String s2) { .
if (s1 == null || s2 == null)
return false;

byte[] s1B = s1.getBytes(�UTF -8�);
byte[] s2B = s2.getBytes(�UTF -8�);
int len1 = s1B.length;
int len2 = s2B.length;
if (len1 != len2)
return false;

int result = 0;
for (int i = 0; i < len2; i++)
result |= s1B[i] ^ s2B[i];

return result == 0;
}

Figure 2: String equality in Eclipse Jetty (s1 secret, s2 public). Top-Left: The code snippet is the original implementation for
the secret comparison that contains a strong side channel. Top-Right: The code is the current version that has been developed
to �x the side channel, but still leaks some information. Bottom-Left: The code snippet is a proposed safe implementation.
Bottom-Right: String equality in Spring-Security that leak whether the length of strings is matching.

Finally, we consider an unsafe variant of password matching from
Spring-Security as shown in Figure 2 (bottom-right). We study
the feasibility of side channels in these four implementations and
apply QF��� to estimate the amount of information leaks using the
number of partitions.

Example Parameters. We consider = 100 and n = 1 as default
con�guration parameters. We set the length of the secret and the
public guess to be the same and �xed to 16 characters. We run
QF��� 30 times on each variant, where each run is for 30 minutes.
We report the maximum number of partitions (:) and the cost
di�erences in bytecode between two closest partitions (X). The
detailed results for can be found in Table 1 and Table 3.

First Variant of Je�y. Figure 2 (top-left) shows the �rst variant,
for which QF��� discovers 17 classes of observations (: = 17).
Each partition is at least 3 bytecodes far from any other partition
(X = 3). Since we �x the length, the number of partitions re�ect
side-channel observations related to the content of secret inputs.
We �nd that each partition shows the number of characters in
the pre�x of secrets that match with the guess. Since there are 16
characters, there can be 17 partitions ranging from no pre�x match
to all 16 characters match. This implementation is known to be
vulnerable to adaptive side channels where an attacker can use the

cost observations to compromise a pre�x of a secret password in
each step of the attack. The outcome of QF��� indirecly indicates
the feasibility of adaptive attacks, while they are not the main focus.

Second Variant of Je�y (current implementation). We consider the
current implementation in Jetty as shown in Figure 2 (top-right).
In this case, QF��� detects 9 partitions where each partition is
at least 1 bytecode far from any others. This analysis shows that
the �x improved the security and reduced the strength of leaks as
compared to the �rst variant. SinceQF��� foundmultiple partitions,
however, we conclude that this variant is not completely safe. To
understand the issue, we analyze the corresponding instructions
generated by J��� Virtual Machine (JVM). The analysis shows
the equal operator (“==”) in the loop body is optimized by JVM
and translated to a conditional jump instruction (if_icmpne) if the
comparison is not successful and an unconditional jump instruction
otherwise. This translation introduces an imbalance comparison
where the unconditional jump includes a single extra bytecode
instruction as compared to the conditional jump.With 16 characters,
the bytecode di�erences, range from 0 to 16, are partitioned into 9
classes with n = 1.

Third Variant of Je�y (OpenJDK [28]). We take a password matching
algorithm from OpenJDK [28] that explicitly uses “xor” operation

8QFuzz: Quantitative Fuzzing for Side Channels
yannic.noller@acm.org
saeid@utep.edu

K=17
𝛿=3

K=9
𝛿 =1

K=1 K=2
𝛿 =149

only leaks
existence of

special character
⚠

DifFuzz

Evaluation
Research Problem State of the Art Our Solution Example Evaluation Summary

Tools/Techniques

● Blazer
● Themis
● DifFuzz
● MaxLeak

Subjects

● Micro-benchmark
● DARPA STAC
● GitHub projects

yannic.noller@acm.org
saeid@utep.edu 9QFuzz: Quantitative Fuzzing for Side Channels

Research Questions
RQ1 Which partitioning algorithm (KDynamic or Greedy) performs better in terms of correct number of

partitions and time for partition computation?
RQ2 How does QFuzz compare with state-of-the-art SC detection techniques like Blazer, Themis, and

DifFuzz?
RQ3 Can QFuzz be used for quantification of SC vulnerabilities in real-world Java applications and how

does it compare with MaxLeak?

Our open-source tool QFuzz and all
experimental subjects are publicly available:

https://github.com/yannicnoller/qfuzz

http://doi.org/10.5281/zenodo.4722965

https://github.com/yannicnoller/qfuzz
http://doi.org/10.5281/zenodo.4722965

RQ1 KDynamic vs. Greedy
Research Problem State of the Art Our Solution Example Evaluation Summary

QFuzz: �antitative Fuzzing for Side Channels ISSTA ’21, July 11–17, 2021, Virtual, Denmark

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

Greedy

KDynamic

computation time (nanosec)

Time Comparison (n=4779 files)

1

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800
0

5

10

15

time (seconds)

#
p
ar
ti
ti
on

seed-1

95% CI

seed-2

95% CI

seed-3

95% CI

seed-4

95% CI

seed-5

95% CI

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800
0

5

10

15

time (seconds)

#
p
ar
ti
ti
on

Greedy

95% CI

KDynamic

95% CI

Figure 1: Eclipse jetty 1 eps1 : number of clusters for 5 seed inputs (lines and bands show averages and 95%
confidence intervals across 30 repetitions).

1

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800
0

5

10

15

time (seconds)

#
p
ar
ti
ti
on

seed-1

95% CI

seed-2

95% CI

seed-3

95% CI

seed-4

95% CI

seed-5

95% CI

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800
0

5

10

15

time (seconds)

#
p
ar
ti
ti
on

Greedy

95% CI

KDynamic

95% CI

Figure 1: Eclipse jetty 1 eps1 : number of clusters for 5 seed inputs (lines and bands show averages and 95%
confidence intervals across 30 repetitions).

1

Figure 3: (left) Computational complexity of Greedy vs. KDynamic in isolation; (middle) Eclipse Je�y 1 (n = 1): temporal devel-
opment of 5 di�erent seed inputs with Greedy; (right) Eclipse Je�y 1 (n = 1): temporal development of Greedy and KDynamic
with 5 di�erent seed inputs combined (lines and bands show averages and 95% con�dence intervals across 30 repetitions).

ensured that this initial input does not crash the application, as
required by the underlying fuzzing engine. We reuse the same
seed inputs for comparison with Greedy and KDynamic, so that
both start at the same initial state. The experiments for RQ1 have
been repeated with 5 di�erent seed inputs to observe the di�erent
behavior of our fuzzer for di�erent initial inputs. For the other
experiments (RQ2 and RQ3), we only report the results for one seed
input because preliminary experiments as well as the experiments
for RQ1 showed that there is no signi�cant variance in the behavior.
Additionally, each experiment has been repeated 30 times in order to
incorporate the randomness of our fuzzing approach. We averaged
the results and calculated the 95% con�dence intervals as well as
the maximum/minimum values.

5.4 Partitioning Algorithms (RQ1)
In Section 4, we propose two partitioning strategies: KDynamic and
Greedy. The partitioning is a part of our mutant �tness evaluation
during fuzzing, which should be as e�cient as possible to not slow
down the overall fuzzing process. From a theoretical perspective,
KDynamic incorporates the maximization of X , while Greedy simply
tries to �nd actual partitions. Therefore, KDynamic is designed to
produce high X values, while Greedy is designed to be fast. In a
preliminary experiment we compared Greedy and KDynamic in
isolation, i.e., just the partitioning for = = 4779 input �les. We
extract the public value and = 100 secret values from the input
�les and then measure the execution time, which each partitioning
algorithm needs to calculate the number of partitions. Figure 3
(left) shows the statistical comparison: KDynamic is (in isolation)
signi�cantly slower and the mean execution time is 1.6 times larger.
Please note that the measured time is in nanoseconds, so that the
absolute di�erences between the two execution times might not be
essential for the surrounding fuzzing process.

In order to see whether there is a observable di�erence in the sur-
rounding fuzzing process, we performed additional experiments as
described in Section 5.1 with regard to the number of identi�ed par-
titions, the cost di�erences X , and time to the maximum number of
partitions. Table 1 shows the results of these experiments. The col-
umn #%0AC8C8>=B shows the true number of partitions, which should
be identi�ed for these subjects. The columns ? and ?<0G describe

the average number of partitions with the 95% con�dence interval
and the maximum number of partitions over 30 runs, respectively.
The column X<0G describes the X value for the ?<0G . The column
)8<4 (B) : ? > 1 shows the average time to identify more than one
partition (with the 95% con�dence interval),)8<4 (B) : ?<0G shows
the average time to the ?<0G value and C<8=

?<0G
shows the minimum

time to �nd the ?<0G over all runs.
Overall, there was no signi�cant di�erence in the number of

partitions identi�ed by both algorithms. There have been minor
discrepancies in favor of the Greedy algorithm (as highlighted in
red). Manual inspections showed that KDynamic algorithm over-
approximates the number of partitions (by one partition) for Eclipse
Jetty 4 (n = 4). The di�erences in the X values are minor or due to
di�erent ?<0G values. For some cases even Greedy achieved better
X values, e.g., Eclipse Jetty 4 (n = 4). The di�erences between the
computation times of Greedy and KDynamic are mostly insigni�-
cant or due to di�erent ?<0G values. We therefore conclude that
the measured time di�erence in the preliminary experiments is too
small to a�ect the overall fuzzing results. The overall fuzzing pro-
cess with mutations, I/O operations etc. takes longer and outweighs
the partitioning e�ort.

In addition to assessing the �nal results, we also compared the
temporal development of the identi�ed partitions and X values be-
tween them over �ve di�erent seed inputs. Figure 3 (middle+right)
shows this exemplary for the subject Eclipse Jetty 1 with n = 1 (the
plots for the other subjects can be found in the collected experi-
mental results on our GitHub repository). We found that there is no
signi�cant di�erence between the 5 di�erent seed inputs over all
subjects, and the two partitioning algorithms perform very similar
during the 30 minutes experiments.

Answer RQ1: There is no signi�cant di�erence in terms of the
number of partitions or computation time (during fuzzing) be-
tween KDynamic and Greedy. Interestingly, Greedy did produce
comparable X values. We choose Greedy as the partition algo-
rithm for the our remaining experiments because it provides an
under-approximation and is more e�cient in isolation.

Computational complexity of
Greedy vs KDynamic in isolation

QFuzz: �antitative Fuzzing for Side Channels ISSTA ’21, July 11–17, 2021, Virtual, Denmark

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

Greedy

KDynamic

computation time (nanosec)

Time Comparison (n=4779 files)

1

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800
0

5

10

15

time (seconds)

#
p
ar
ti
ti
on

seed-1

95% CI

seed-2

95% CI

seed-3

95% CI

seed-4

95% CI

seed-5

95% CI

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800
0

5

10

15

time (seconds)

#
p
ar
ti
ti
on

Greedy

95% CI

KDynamic

95% CI

Figure 1: Eclipse jetty 1 eps1 : number of clusters for 5 seed inputs (lines and bands show averages and 95%
confidence intervals across 30 repetitions).

1

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800
0

5

10

15

time (seconds)

#
p
ar
ti
ti
on

seed-1

95% CI

seed-2

95% CI

seed-3

95% CI

seed-4

95% CI

seed-5

95% CI

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800
0

5

10

15

time (seconds)

#
p
ar
ti
ti
on

Greedy

95% CI

KDynamic

95% CI

Figure 1: Eclipse jetty 1 eps1 : number of clusters for 5 seed inputs (lines and bands show averages and 95%
confidence intervals across 30 repetitions).

1

Figure 3: (left) Computational complexity of Greedy vs. KDynamic in isolation; (middle) Eclipse Je�y 1 (n = 1): temporal devel-
opment of 5 di�erent seed inputs with Greedy; (right) Eclipse Je�y 1 (n = 1): temporal development of Greedy and KDynamic
with 5 di�erent seed inputs combined (lines and bands show averages and 95% con�dence intervals across 30 repetitions).

ensured that this initial input does not crash the application, as
required by the underlying fuzzing engine. We reuse the same
seed inputs for comparison with Greedy and KDynamic, so that
both start at the same initial state. The experiments for RQ1 have
been repeated with 5 di�erent seed inputs to observe the di�erent
behavior of our fuzzer for di�erent initial inputs. For the other
experiments (RQ2 and RQ3), we only report the results for one seed
input because preliminary experiments as well as the experiments
for RQ1 showed that there is no signi�cant variance in the behavior.
Additionally, each experiment has been repeated 30 times in order to
incorporate the randomness of our fuzzing approach. We averaged
the results and calculated the 95% con�dence intervals as well as
the maximum/minimum values.

5.4 Partitioning Algorithms (RQ1)
In Section 4, we propose two partitioning strategies: KDynamic and
Greedy. The partitioning is a part of our mutant �tness evaluation
during fuzzing, which should be as e�cient as possible to not slow
down the overall fuzzing process. From a theoretical perspective,
KDynamic incorporates the maximization of X , while Greedy simply
tries to �nd actual partitions. Therefore, KDynamic is designed to
produce high X values, while Greedy is designed to be fast. In a
preliminary experiment we compared Greedy and KDynamic in
isolation, i.e., just the partitioning for = = 4779 input �les. We
extract the public value and = 100 secret values from the input
�les and then measure the execution time, which each partitioning
algorithm needs to calculate the number of partitions. Figure 3
(left) shows the statistical comparison: KDynamic is (in isolation)
signi�cantly slower and the mean execution time is 1.6 times larger.
Please note that the measured time is in nanoseconds, so that the
absolute di�erences between the two execution times might not be
essential for the surrounding fuzzing process.

In order to see whether there is a observable di�erence in the sur-
rounding fuzzing process, we performed additional experiments as
described in Section 5.1 with regard to the number of identi�ed par-
titions, the cost di�erences X , and time to the maximum number of
partitions. Table 1 shows the results of these experiments. The col-
umn #%0AC8C8>=B shows the true number of partitions, which should
be identi�ed for these subjects. The columns ? and ?<0G describe

the average number of partitions with the 95% con�dence interval
and the maximum number of partitions over 30 runs, respectively.
The column X<0G describes the X value for the ?<0G . The column
)8<4 (B) : ? > 1 shows the average time to identify more than one
partition (with the 95% con�dence interval),)8<4 (B) : ?<0G shows
the average time to the ?<0G value and C<8=

?<0G
shows the minimum

time to �nd the ?<0G over all runs.
Overall, there was no signi�cant di�erence in the number of

partitions identi�ed by both algorithms. There have been minor
discrepancies in favor of the Greedy algorithm (as highlighted in
red). Manual inspections showed that KDynamic algorithm over-
approximates the number of partitions (by one partition) for Eclipse
Jetty 4 (n = 4). The di�erences in the X values are minor or due to
di�erent ?<0G values. For some cases even Greedy achieved better
X values, e.g., Eclipse Jetty 4 (n = 4). The di�erences between the
computation times of Greedy and KDynamic are mostly insigni�-
cant or due to di�erent ?<0G values. We therefore conclude that
the measured time di�erence in the preliminary experiments is too
small to a�ect the overall fuzzing results. The overall fuzzing pro-
cess with mutations, I/O operations etc. takes longer and outweighs
the partitioning e�ort.

In addition to assessing the �nal results, we also compared the
temporal development of the identi�ed partitions and X values be-
tween them over �ve di�erent seed inputs. Figure 3 (middle+right)
shows this exemplary for the subject Eclipse Jetty 1 with n = 1 (the
plots for the other subjects can be found in the collected experi-
mental results on our GitHub repository). We found that there is no
signi�cant di�erence between the 5 di�erent seed inputs over all
subjects, and the two partitioning algorithms perform very similar
during the 30 minutes experiments.

Answer RQ1: There is no signi�cant di�erence in terms of the
number of partitions or computation time (during fuzzing) be-
tween KDynamic and Greedy. Interestingly, Greedy did produce
comparable X values. We choose Greedy as the partition algo-
rithm for the our remaining experiments because it provides an
under-approximation and is more e�cient in isolation.

Eclipse Jetty (ε=1): temporal
development Greedy and KDynamic

with 5 different seed inputs
combined

(lines and bands show averages and 95% confidence
intervals across 30 repetitions)

10QFuzz: Quantitative Fuzzing for Side Channels
yannic.noller@acm.org
saeid@utep.edu

RQ2 Detection
Research Problem State of the Art Our Solution Example Evaluation Summary

11QFuzz: Quantitative Fuzzing for Side Channels
yannic.noller@acm.org
saeid@utep.edu

same vulnerabilities detected

large values for 𝐾 may slow
down QFuzz, but eventually,
enable the exploration of many
partitions

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Yannic Noller and Saeid Tizpaz-Niari

Table 1: Comparison of partitioning algorithms (discrepancies are highlighted in red).

Subject n #Partitions Algorithm p pmax Xmax
Time (s)

? > 1 ?<0G C<8=
?<0G

Eclipse Jetty 1 1 17 Greedy 16.24 (+/- 0.24) 17 3 4.65 (+/- 0.10) 1436.16 (+/- 53.58) 675
KDynamic 16.59 (+/- 0.15) 17 3 4.54 (+/- 0.10) 1423.65 (+/- 51.89) 656

Eclipse Jetty 1 4 9 Greedy 8.63 (+/- 0.10) 9 6 31.20 (+/- 6.38) 1428.63 (+/- 56.03) 697
KDynamic 8.65 (+/- 0.12) 9 3 31.71 (+/- 6.53) 1394.75 (+/- 55.87) 669

Eclipse Jetty 4 1 9 Greedy 8.51 (+/- 0.09) 9 1 3.93 (+/- 0.11) 1426.89 (+/- 68.86) 496
KDynamic 8.45 (+/- 0.11) 9 1 4.15 (+/- 0.11) 1437.27 (+/- 66.16) 497

Eclipse Jetty 4 4 4 Greedy 3.94 (+/- 0.04) 4 5 28.50 (+/- 4.61) 1083.39 (+/- 59.33) 245
KDynamic 4.27 (+/- 0.08) 5 2 27.21 (+/- 4.07) 1678.88 (+/- 38.36) 599

Eclipse Jetty 5 1 1 Greedy 1.00 (+/- 0.00) 1 0 - 1.00 (+/- 0.00) 1
KDynamic 1.00 (+/- 0.00) 1 0 - 1.00 (+/- 0.00) 1

Eclipse Jetty 5 4 1 Greedy 1.00 (+/- 0.00) 1 0 - 1.00 (+/- 0.00) 1
KDynamic 1.00 (+/- 0.00) 1 0 - 1.00 (+/- 0.00) 1

Leak Set 1 1 13 Greedy 13.00 (+/- 0.00) 13 92 4.20 (+/- 0.07) 77.53 (+/- 8.31) 8
KDynamic 13.00 (+/- 0.00) 13 92 3.77 (+/- 0.09) 79.77 (+/- 9.36) 8

Leak Set 2 1 17 Greedy 17.00 (+/- 0.00) 17 92 4.13 (+/- 0.07) 389.46 (+/- 30.03) 93
KDynamic 16.99 (+/- 0.01) 17 92 3.73 (+/- 0.12) 379.14 (+/- 35.43) 42

Leak Set 3 1 21 Greedy 20.92 (+/- 0.04) 21 92 5.01 (+/- 0.01) 815.82 (+/- 72.93) 223
KDynamic 20.89 (+/- 0.05) 21 92 5.00 (+/- 0.00) 842.37 (+/- 78.11) 208

Leak Set 4 1 25 Greedy 24.39 (+/- 0.12) 25 92 5.00 (+/- 0.00) 1437.27 (+/- 72.39) 453
KDynamic 24.50 (+/- 0.11) 25 92 3.56 (+/- 0.13) 1389.97 (+/- 71.79) 268

Leak Set 5 1 29 Greedy 27.71 (+/- 0.17) 29 92 4.34 (+/- 0.08) 1668.63 (+/- 46.38) 405
KDynamic 27.66 (+/- 0.16) 29 92 3.77 (+/- 0.11) 1689.11 (+/- 44.18) 426

Apache WSS4J 1 17 Greedy 12.70 (+/- 0.40) 17 3 4.93 (+/- 0.13) 1772.50 (+/- 15.58) 1079
KDynamic 12.72 (+/- 0.41) 17 3 4.89 (+/- 0.13) 1772.54 (+/- 14.05) 1301

Table 2: The results of applying QF��� to the B����� benchmarks (discrepancies are highlighted in red).

Benchmark Version QF��� D��F��� Time (s)
?<0G X<0G X<0G QF���, ? > 1 D��F���, X > 0 B����� T�����

Array Safe 1 0 1 - 7.40 (+/- 1.21) 1.60 0.28
Array Unsafe 2 192 195 5.70 (+/- 0.21) 7.40 (+/- 0.93) 0.16 0.23
LoopAndbranch Safe 2 4 4,278,268,702 1045.33 (+/- 43.51) 18.60 (+/- 6.40) 0.23 0.33
LoopAndbranch Unsafe 2 4 4,294,838,782 1078.63 (+/- 61.04) 10.60 (+/- 2.62) 0.65 0.16
Sanity Safe 1 0 0 - - 0.63 0.41
Sanity Unsafe 2 3,537,954,539 4,290,510,883 1414.13 (+/- 102.27) 163 (+/- 40.63) 0.30 0.17
Straightline Safe 1 0 0 - - 0.21 0.49
Straightline Unsafe 2 8 8 7.47 (+/- 0.18) 14.60 (+/- 6.53) 22.20 5.30
unixlogin Safe - - 3 - 510 (+/- 91.18) 0.86 -
unixlogin Unsafe 2 6,400,000,008 3,200,000,008 1784.47 (+/- 21.27) 464.20 (+/- 64.61) 0.77 -
modPow1 Safe 1 0 0 - - 1.47 0.61
modPow1 Unsafe 22 117 3,068 4.73 (+/- 0.16) 4.80 (+/- 1.11) 218.54 14.16
modPow2 Safe 1 0 9 - - 1.62 0.75
modPow2 Unsafe 31 1 5,206 294.70 (+/- 104.66) 23.00 (+/- 3.48) 7813.68 141.36
passwordEq Safe 1 0 0.00 - - 2.70 1.10
passwordEq Unsafe 93 2 127 4.57 (+/- 0.22) 8.60 (+/-2.11) 1.30 0.39
k96 Safe 1 0 0 - - 0.70 0.61
k96 Unsafe 93 2 3,087,339 4.57 (+/- 0.22) 3.40 (+/- 0.98) 1.29 0.54
gpt14 Safe 12 1 517 5.00 (+/- 0.00) 4.20 (+/- 0.80) 1.43 0.46
gpt14 Unsafe 92 2 12,965,890 5.87 (+/- 0.12) 4.40 (+/- 1.03) 219.30 1.25
login Safe 1 0 0 - - 1.77 0.54
login Unsafe 17 2 62 7.77 (+/- 0.69) 10.00 (+/- 2.92) 1.79 0.70

5.5 Comparison with B�����, T�����, and
D��F��� (RQ2)

QF��� is useful for both the detection and quanti�cation of side
channels (SC), and hence, we can compare QF��� to detection
techniques. We compare QF��� with B����� [1], T����� [9], and
D��F��� [27], the three state-of-the-art SC detectors. Furthermore,
QF���’s implementation is an extension of D��F���, and therefore
can serve as a baseline with regard to side-channel detection.

The benchmark of the related studies include subjects mostly in
two variants: safe and unsafe. A safe variant is supposed to not show
any side-channel vulnerability, while the unsafe variant is known to
include a vulnerability. For unsafe subjects, QF��� should identify

at least 2 partitions. This indicates some measurable di�erences in
the public observations depend on the secret values. Consequently,
for safe subjects, QF��� should identify exactly one partition.

Tables 2, 3, and 4 show the corresponding results. The columns
for QF��� only show the ?<0G and X<0G since these parameters
are the most relevant ones in detecting side channels. In order to
compare the analysis time, we report the time untilQF��� identi�es
at least two partitions, which compares well with D��F���’s time
parameter X > 0. Our default value of = 100 was not applicable
to a few subjects: LoopAndBranch, Sanity, and UnixLogin because
they represent relatively expensive executions. As mentioned in
Section 4, the fuzzer performs concrete executions to collect the
observations. Since a large value of strongly in�uences the time

additional information about
the strength of leaks and the
exploitability of vulnerabilities

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Yannic Noller and Saeid Tizpaz-Niari

Table 5: The results of applying QF��� to the RSA subjects inM��L��� [29] (red highlighted exceeded the budget: timeout of
1 hour or memory of 8GB, blue highlighted partitions are below the maximum possible observation).

Modulo Len #Partitions QF��� (n=0, 1h) MaxLeak (default) MaxLeak (No solver)
? ?<0G Time (s): ?<0G C<8= #Obs Time (s) #Obs Time (s)

1717 3 7 7.00 (+/- 0.00) 7 1.00 (+/- 0.00) 1 6 20.892 9 1.047
1717 4 10 10.00 (+/- 0.00) 10 7.43 (+/- 0.45) 5 9 152.332 12 1.370
1717 5 13 13.00 (+/- 0.00) 13 20.40 (+/- 3.87) 6 12 839.788 15 2.916
1717 6 16 16.00 (+/- 0.00) 16 294.60 (+/- 53.17) 22 15 3731.328 18 8.006
1717 7 19 18.37 (+/- 0.25) 19 2484.30 (+/- 451.42) 385 > 4 h 21 19.241
1717 8 22 20.43 (+/- 0.45) 22 3168.07 (+/- 303.47) 508 > 4 h 24 91.821
1717 9 25 22.20 (+/- 0.36) 24 3489.03 (+/- 169.19) 1009 > 4 h > 8 GB
1717 10 28 24.40 (+/- 0.49) 27 3548.63 (+/- 57.73) 2929 > 4 h > 8 GB

834443 3 7 7.00 (+/- 0.00) 7 13.40 (+/- 1.96) 8 6 7.416 9 1.188
834443 4 10 10.00 (+/- 0.00) 10 40.33 (+/- 12.14) 6 9 42.684 12 1.385
834443 5 13 12.93 (+/- 0.09) 13 645.70 (+/- 329.43) 74 12 215.929 15 2.953
834443 6 16 15.40 (+/- 0.20) 16 2711.87 (+/- 433.23) 271 15 936.921 18 7.511
834443 7 19 16.80 (+/- 0.33) 18 3227.60 (+/- 275.29) 952 18 4021.150 21 19.068
834443 8 22 17.93 (+/- 0.54) 22 3556.70 (+/- 83.44) 2301 > 4 h 24 96.360
834443 9 25 20.13 (+/- 0.59) 24 3572.83 (+/- 37.16) 3110 > 4 h > 8 GB
834443 10 28 21.83 (+/- 0.46) 24 3504.13 (+/- 121.70) 1845 > 4 h > 8 GB

1964903306 3 7 6.47 (+/- 0.18) 7 2228.30 (+/- 542.13) 119 6 12.167 9 1.085
1964903306 4 10 8.67 (+/- 0.19) 10 3494.30 (+/- 203.69) 429 9 70.805 12 1.535
1964903306 5 13 10.70 (+/- 0.19) 12 3594.00 (+/- 11.56) 3420 12 2306.261 15 3.391
1964903306 6 16 12.90 (+/- 0.11) 13 1337.90 (+/- 443.89) 206 > 4 h 18 7.506
1964903306 7 19 14.10 (+/- 0.27) 15 2984.67 (+/- 362.05) 503 > 4 h 21 19.486
1964903306 8 22 15.33 (+/- 0.36) 17 3398.37 (+/- 204.45) 1411 > 4 h 24 98.325
1964903306 9 25 16.30 (+/- 0.51) 19 3562.33 (+/- 54.24) 2819 > 4 h > 8 GB
1964903306 10 28 17.30 (+/- 0.48) 20 3559.67 (+/- 77.72) 2390 > 4 h > 8 GB

leak whether the secret String contains a special character or not.
Although the quanti�cation of information leaks by QF��� is an
under-approximation of the true number of partitions (because of
its dynamic nature), it signi�cantly supports the understanding of
the vulnerability and the strength of leaks.

Answer RQ2 (Part 1/2): QF��� detects the same vulnerabilities
similar to state-of-the-art techniques. Furthermore, QF��� pro-
vides additional information about the strength of leaks and the
exploitability of vulnerabilities.

5.5.2 Results with regard to Analysis Time (RQ2/part2). Comparing
the fuzzing time to the �rst inputs that reveal more than 1 partition,
QF��� is considerably slower than the other techniques in some
cases. The large value in our experiments (usually = 100) trig-
gers a large number of concrete program executions during input
assessment in fuzzing. If the program executions are expensive as
well, then this can slow down the overall fuzzing campaign. On the
one hand, a large value for enables QF��� to identify up to par-
titions and may lead to a faster exploration via considering multiple
secret values. On the other hand, the large value slows down the
overall fuzzing process, as the input assessments take longer. The
choice of an appropriate value for remains a trade-o� between
many partition explorations and a few partition exploitations.

We also observed that in some cases QF��� is signi�cantly
faster than the static analysis techniques B����� and T����� (e.g.,
Straightline unsafe andmodPow1/2 unsafe). As reported inB����� [1],
for the long-running benchmarks B����� su�ers from the combi-
natorial growth of necessary expression comparisons. T����� can
improve but still su�ers for complex benchmarks. Note that both
techniques use taint analysis that is known to be computationally
expensive for languages with dynamic features such as J��� [23].

QF��� (as well as D��F���) uses a dynamic analysis, which outper-
forms static analysis in such cases.

Answer RQ2 (Part 2/2): Large values for may slow down
QF���, but eventually, enable the exploration of many partitions.
QF��� outperforms static analysis on complex benchmarks.

5.6 Comparison to M��L��� [29] on RSA
subjects (RQ3)

Pasareanu et al. [29] quantify information leaks using symbolic
execution and model counting (MaxSMT). In particular, they eval-
uate their approach on the implementations of fast modular ex-
ponentiation. Their cost model does not count executed bytecode
instructions, but counts the number of visited branches. To match
with their evaluations, we customized our cost model, reduced n to
zero, and increased the timeout of the experiments to one hour. To
enable a fair comparison, we reproducedM��L���’s results on our
experiment setup.

Table 5 shows the results for these experiments (similar to Figure
9 in [29]). The column Modulo denotes the modulo value used
for the modulo exponentiation, while the column Len denotes the
bitvector length of the secret. The column #Partitions shows the
groundtruth for the number of identi�able partitions. The true
number of partitions is formulated to be 3*(Len-1) in [29] for every
experiment. We noticed that the formulation is for Len>1, while
we also consider Len=1, which leads us to �nd one more partition.
Therefore, we report the #Partitions as: 3*(Len-1)+1. For QF���, we
report the average number of identi�ed partitions ? with the 95%
con�dence intervals, the maximum number of partitions ?<0G , the
average time to ?<0G , and the minimum time to ?<0G over all 30
runs. The results by [29] come in two modes: default and no solver.
The second one represents symbolic execution without �ltering

RQ3 Quantification
Research Problem State of the Art Our Solution Example Evaluation Summary

due to its dynamic analysis,
QFuzz is more scalable than
MaxLeak

QFuzz has precision
comparable to MaxLeak that
uses symbolic execution with
model counting

even for complex scenarios
QFuzz provides reasonable
lower-bound guarantees

12QFuzz: Quantitative Fuzzing for Side Channels
yannic.noller@acm.org
saeid@utep.edu

Detection / Quantification of Side-
Channel Vulnerabilities

Research Problem State of the Art Our Solution Example Evaluation Summary

yannic.noller@acm.org
saeid@utep.edu 2QFuzz: Quantitative Fuzzing for Side Channels

QFuzz: �antitative Fuzzing for Side Channels ISSTA ’21, July 11–17, 2021, Virtual, Denmark

stringEquals (Original Jetty, v1)

boolean stringEquals(String s1, String s2) { .
if (s1 == s2)
return true;

if (s1 == null || s2 == null ||
s1.length () != s2.length ())

return false;
for (int i = 0; i < s1.length (); ++i)
if (s1.charAt(i) != s2.charAt(i))
return false;

return true;
}

stringEquals (Current Jetty, v4)

boolean stringEquals(String s1, String s2) {
if (s1 == s2) return true;
if (s1 == null || s2 == null)
return false;

boolean result = true;
int l1 = s1.length ();
int l2 = s2.length ();
for (int i = 0; i < l2; ++i)
result &= s1.charAt(i%l1) == s2.charAt(i));

return result && l1 == l2;
}

stringEquals (Safe Jetty, v5)

boolean stringEquals(String s1, String s2) { .
if (s1 == s2) return true;
if (s1 == null || s2 == null)
return false;

int l1 = s1.length ();
int l2 = s2.length ();
if(l2 == 0){ return l1 == 0}
int result |= l1 - l2;
for (int i = 0; i < l2; ++i){
int r = ((i - l1) >>> 31) * i;
result |= s1.charAt(r) ^ s2.charAt(i);

}
return result == 0;

}

Equals (Unsafe Spring-Security)

boolean Equals(String s1, String s2) { .
if (s1 == null || s2 == null)
return false;

byte[] s1B = s1.getBytes(�UTF -8�);
byte[] s2B = s2.getBytes(�UTF -8�);
int len1 = s1B.length;
int len2 = s2B.length;
if (len1 != len2)
return false;

int result = 0;
for (int i = 0; i < len2; i++)
result |= s1B[i] ^ s2B[i];

return result == 0;
}

Figure 2: String equality in Eclipse Jetty (s1 secret, s2 public). Top-Left: The code snippet is the original implementation for
the secret comparison that contains a strong side channel. Top-Right: The code is the current version that has been developed
to �x the side channel, but still leaks some information. Bottom-Left: The code snippet is a proposed safe implementation.
Bottom-Right: String equality in Spring-Security that leak whether the length of strings is matching.

Finally, we consider an unsafe variant of password matching from
Spring-Security as shown in Figure 2 (bottom-right). We study
the feasibility of side channels in these four implementations and
apply QF��� to estimate the amount of information leaks using the
number of partitions.

Example Parameters. We consider = 100 and n = 1 as default
con�guration parameters. We set the length of the secret and the
public guess to be the same and �xed to 16 characters. We run
QF��� 30 times on each variant, where each run is for 30 minutes.
We report the maximum number of partitions (:) and the cost
di�erences in bytecode between two closest partitions (X). The
detailed results for can be found in Table 1 and Table 3.

First Variant of Je�y. Figure 2 (top-left) shows the �rst variant,
for which QF��� discovers 17 classes of observations (: = 17).
Each partition is at least 3 bytecodes far from any other partition
(X = 3). Since we �x the length, the number of partitions re�ect
side-channel observations related to the content of secret inputs.
We �nd that each partition shows the number of characters in
the pre�x of secrets that match with the guess. Since there are 16
characters, there can be 17 partitions ranging from no pre�x match
to all 16 characters match. This implementation is known to be
vulnerable to adaptive side channels where an attacker can use the

cost observations to compromise a pre�x of a secret password in
each step of the attack. The outcome of QF��� indirecly indicates
the feasibility of adaptive attacks, while they are not the main focus.

Second Variant of Je�y (current implementation). We consider the
current implementation in Jetty as shown in Figure 2 (top-right).
In this case, QF��� detects 9 partitions where each partition is
at least 1 bytecode far from any others. This analysis shows that
the �x improved the security and reduced the strength of leaks as
compared to the �rst variant. SinceQF��� foundmultiple partitions,
however, we conclude that this variant is not completely safe. To
understand the issue, we analyze the corresponding instructions
generated by J��� Virtual Machine (JVM). The analysis shows
the equal operator (“==”) in the loop body is optimized by JVM
and translated to a conditional jump instruction (if_icmpne) if the
comparison is not successful and an unconditional jump instruction
otherwise. This translation introduces an imbalance comparison
where the unconditional jump includes a single extra bytecode
instruction as compared to the conditional jump.With 16 characters,
the bytecode di�erences, range from 0 to 16, are partitioned into 9
classes with n = 1.

Third Variant of Je�y (OpenJDK [28]). We take a password matching
algorithm from OpenJDK [28] that explicitly uses “xor” operation

Side Channel Vulnerability
• leackage of secret data
• software side-channels
• observables (e.g., execution time)

conditional early return
causes leakage

QFuzz: �antitative Fuzzing for Side Channels ISSTA ’21, July 11–17, 2021, Virtual, Denmark

stringEquals (Original Jetty, v1)

boolean stringEquals(String s1 , String s2) { .
if (s1 == s2)
return true;

if (s1 == null || s2 == null ||
s1.length () != s2.length ())

return false;
for (int i = 0; i < s1.length (); ++i)
if (s1.charAt(i) != s2.charAt(i))
return false;

return true;
}

stringEquals (Current Jetty, v4)

boolean stringEquals(String s1, String s2) {
if (s1 == s2) return true;
if (s1 == null || s2 == null)
return false;

boolean result = true;
int l1 = s1.length ();
int l2 = s2.length ();
for (int i = 0; i < l2; ++i)
result &= s1.charAt(i%l1) == s2.charAt(i));

return result && l1 == l2;
}

stringEquals (Safe Jetty, v5)

boolean stringEquals(String s1 , String s2) { .
if (s1 == s2) return true;
if (s1 == null || s2 == null)
return false;

int l1 = s1.length ();
int l2 = s2.length ();
if(l2 == 0){ return l1 == 0}
int result |= l1 - l2;
for (int i = 0; i < l2; ++i){
int r = ((i - l1) >>> 31) * i;
result |= s1.charAt(r) ^ s2.charAt(i);

}
return result == 0;

}

Equals (Unsafe Spring-Security)

boolean Equals(String s1, String s2) { .
if (s1 == null || s2 == null)
return false;

byte[] s1B = s1.getBytes(�UTF -8�);
byte[] s2B = s2.getBytes(�UTF -8�);
int len1 = s1B.length;
int len2 = s2B.length;
if (len1 != len2)
return false;

int result = 0;
for (int i = 0; i < len2; i++)
result |= s1B[i] ^ s2B[i];

return result == 0;
}

Figure 2: String equality in Eclipse Jetty (s1 secret, s2 public). Top-Left: The code snippet is the original implementation for
the secret comparison that contains a strong side channel. Top-Right: The code is the current version that has been developed
to �x the side channel, but still leaks some information. Bottom-Left: The code snippet is a proposed safe implementation.
Bottom-Right: String equality in Spring-Security that leak whether the length of strings is matching.

Finally, we consider an unsafe variant of password matching from
Spring-Security as shown in Figure 2 (bottom-right). We study
the feasibility of side channels in these four implementations and
apply QF��� to estimate the amount of information leaks using the
number of partitions.

Example Parameters. We consider = 100 and n = 1 as default
con�guration parameters. We set the length of the secret and the
public guess to be the same and �xed to 16 characters. We run
QF��� 30 times on each variant, where each run is for 30 minutes.
We report the maximum number of partitions (:) and the cost
di�erences in bytecode between two closest partitions (X). The
detailed results for can be found in Table 1 and Table 3.

First Variant of Je�y. Figure 2 (top-left) shows the �rst variant,
for which QF��� discovers 17 classes of observations (: = 17).
Each partition is at least 3 bytecodes far from any other partition
(X = 3). Since we �x the length, the number of partitions re�ect
side-channel observations related to the content of secret inputs.
We �nd that each partition shows the number of characters in
the pre�x of secrets that match with the guess. Since there are 16
characters, there can be 17 partitions ranging from no pre�x match
to all 16 characters match. This implementation is known to be
vulnerable to adaptive side channels where an attacker can use the

cost observations to compromise a pre�x of a secret password in
each step of the attack. The outcome of QF��� indirecly indicates
the feasibility of adaptive attacks, while they are not the main focus.

Second Variant of Je�y (current implementation). We consider the
current implementation in Jetty as shown in Figure 2 (top-right).
In this case, QF��� detects 9 partitions where each partition is
at least 1 bytecode far from any others. This analysis shows that
the �x improved the security and reduced the strength of leaks as
compared to the �rst variant. SinceQF��� foundmultiple partitions,
however, we conclude that this variant is not completely safe. To
understand the issue, we analyze the corresponding instructions
generated by J��� Virtual Machine (JVM). The analysis shows
the equal operator (“==”) in the loop body is optimized by JVM
and translated to a conditional jump instruction (if_icmpne) if the
comparison is not successful and an unconditional jump instruction
otherwise. This translation introduces an imbalance comparison
where the unconditional jump includes a single extra bytecode
instruction as compared to the conditional jump.With 16 characters,
the bytecode di�erences, range from 0 to 16, are partitioned into 9
classes with n = 1.

Third Variant of Je�y (OpenJDK [28]). We take a password matching
algorithm from OpenJDK [28] that explicitly uses “xor” operation

bytecode still includes conditional jump with
execution time differences

Detection vs Quantification

Is there a vulnerability?
⇔

How much information can be leaked?

QFuzz: Quantitative Fuzzing
for Side Channels

Research Problem State of the Art Our Solution Example Evaluation Summary

yannic.noller@acm.org
saeid@utep.edu 13QFuzz: Quantitative Fuzzing for Side Channels

QFuzz: �antitative Fuzzing for Side Channels ISSTA ’21, July 11–17, 2021, Virtual, Denmark

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

Greedy

KDynamic

computation time (nanosec)

Time Comparison (n=4779 files)

1

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800
0

5

10

15

time (seconds)

#
p
ar
ti
ti
on

seed-1

95% CI

seed-2

95% CI

seed-3

95% CI

seed-4

95% CI

seed-5

95% CI

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800
0

5

10

15

time (seconds)

#
p
ar
ti
ti
on

Greedy

95% CI

KDynamic

95% CI

Figure 1: Eclipse jetty 1 eps1 : number of clusters for 5 seed inputs (lines and bands show averages and 95%
confidence intervals across 30 repetitions).

1

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800
0

5

10

15

time (seconds)

#
p
ar
ti
ti
on

seed-1

95% CI

seed-2

95% CI

seed-3

95% CI

seed-4

95% CI

seed-5

95% CI

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800
0

5

10

15

time (seconds)

#
p
ar
ti
ti
on

Greedy

95% CI

KDynamic

95% CI

Figure 1: Eclipse jetty 1 eps1 : number of clusters for 5 seed inputs (lines and bands show averages and 95%
confidence intervals across 30 repetitions).

1

Figure 3: (left) Computational complexity of Greedy vs. KDynamic in isolation; (middle) Eclipse Je�y 1 (n = 1): temporal devel-
opment of 5 di�erent seed inputs with Greedy; (right) Eclipse Je�y 1 (n = 1): temporal development of Greedy and KDynamic
with 5 di�erent seed inputs combined (lines and bands show averages and 95% con�dence intervals across 30 repetitions).

ensured that this initial input does not crash the application, as
required by the underlying fuzzing engine. We reuse the same
seed inputs for comparison with Greedy and KDynamic, so that
both start at the same initial state. The experiments for RQ1 have
been repeated with 5 di�erent seed inputs to observe the di�erent
behavior of our fuzzer for di�erent initial inputs. For the other
experiments (RQ2 and RQ3), we only report the results for one seed
input because preliminary experiments as well as the experiments
for RQ1 showed that there is no signi�cant variance in the behavior.
Additionally, each experiment has been repeated 30 times in order to
incorporate the randomness of our fuzzing approach. We averaged
the results and calculated the 95% con�dence intervals as well as
the maximum/minimum values.

5.4 Partitioning Algorithms (RQ1)
In Section 4, we propose two partitioning strategies: KDynamic and
Greedy. The partitioning is a part of our mutant �tness evaluation
during fuzzing, which should be as e�cient as possible to not slow
down the overall fuzzing process. From a theoretical perspective,
KDynamic incorporates the maximization of X , while Greedy simply
tries to �nd actual partitions. Therefore, KDynamic is designed to
produce high X values, while Greedy is designed to be fast. In a
preliminary experiment we compared Greedy and KDynamic in
isolation, i.e., just the partitioning for = = 4779 input �les. We
extract the public value and = 100 secret values from the input
�les and then measure the execution time, which each partitioning
algorithm needs to calculate the number of partitions. Figure 3
(left) shows the statistical comparison: KDynamic is (in isolation)
signi�cantly slower and the mean execution time is 1.6 times larger.
Please note that the measured time is in nanoseconds, so that the
absolute di�erences between the two execution times might not be
essential for the surrounding fuzzing process.

In order to see whether there is a observable di�erence in the sur-
rounding fuzzing process, we performed additional experiments as
described in Section 5.1 with regard to the number of identi�ed par-
titions, the cost di�erences X , and time to the maximum number of
partitions. Table 1 shows the results of these experiments. The col-
umn #%0AC8C8>=B shows the true number of partitions, which should
be identi�ed for these subjects. The columns ? and ?<0G describe

the average number of partitions with the 95% con�dence interval
and the maximum number of partitions over 30 runs, respectively.
The column X<0G describes the X value for the ?<0G . The column
)8<4 (B) : ? > 1 shows the average time to identify more than one
partition (with the 95% con�dence interval),)8<4 (B) : ?<0G shows
the average time to the ?<0G value and C<8=

?<0G
shows the minimum

time to �nd the ?<0G over all runs.
Overall, there was no signi�cant di�erence in the number of

partitions identi�ed by both algorithms. There have been minor
discrepancies in favor of the Greedy algorithm (as highlighted in
red). Manual inspections showed that KDynamic algorithm over-
approximates the number of partitions (by one partition) for Eclipse
Jetty 4 (n = 4). The di�erences in the X values are minor or due to
di�erent ?<0G values. For some cases even Greedy achieved better
X values, e.g., Eclipse Jetty 4 (n = 4). The di�erences between the
computation times of Greedy and KDynamic are mostly insigni�-
cant or due to di�erent ?<0G values. We therefore conclude that
the measured time di�erence in the preliminary experiments is too
small to a�ect the overall fuzzing results. The overall fuzzing pro-
cess with mutations, I/O operations etc. takes longer and outweighs
the partitioning e�ort.

In addition to assessing the �nal results, we also compared the
temporal development of the identi�ed partitions and X values be-
tween them over �ve di�erent seed inputs. Figure 3 (middle+right)
shows this exemplary for the subject Eclipse Jetty 1 with n = 1 (the
plots for the other subjects can be found in the collected experi-
mental results on our GitHub repository). We found that there is no
signi�cant di�erence between the 5 di�erent seed inputs over all
subjects, and the two partitioning algorithms perform very similar
during the 30 minutes experiments.

Answer RQ1: There is no signi�cant di�erence in terms of the
number of partitions or computation time (during fuzzing) be-
tween KDynamic and Greedy. Interestingly, Greedy did produce
comparable X values. We choose Greedy as the partition algo-
rithm for the our remaining experiments because it provides an
under-approximation and is more e�cient in isolation.

State of the Art
Research Problem State of the Art Our Solution Example Evaluation Summary

yannic.noller@acm.org
saeid@utep.edu 4QFuzz: Quantitative Fuzzing for Side Channels

Precise Detection of Side-Channel Vulnerabilities using
�antitative Cartesian Hoare Logic

Jia Chen
University of Texas at Austin

Austin, Texas
jchen@cs.utexas.edu

Yu Feng
University of Texas at Austin

Austin, Texas
yufeng@cs.utexas.edu

Isil Dillig
University of Texas at Austin

Austin, Texas
isil@cs.utexas.edu

ABSTRACT
This paper presents T�����, an end-to-end static analysis tool for
�nding resource-usage side-channel vulnerabilities in Java appli-
cations. We introduce the notion of �-bounded non-interference,
a variant and relaxation of Goguen and Meseguer’s well-known
non-interference principle. We then present Quantitative Cartesian
Hoare Logic (QCHL), a program logic for verifying �-bounded non-
interference. Our tool, T�����, combines automated reasoning in
CHL with lightweight static taint analysis to improve scalability.
We evaluate T����� on well known Java applications and demon-
strate that T����� can �nd unknown side-channel vulnerabilities
in widely-used programs. We also show that T����� can verify
the absence of vulnerabilities in repaired versions of vulnerable
programs and that T����� compares favorably against B�����, a
state-of-the-art static analysis tool for �nding timing side channels
in Java applications.

CCS CONCEPTS
• Security and privacy→ Logic and veri�cation; Software se-
curity engineering; • Theory of computation → Automated
reasoning;

KEYWORDS
vulnerability detection; side channels; static analysis; veri�cation

1 INTRODUCTION
Side channel attacks allow an adversary to infer security-sensitive
information of a system by observing its external behavior. For in-
stance, in the case of timing side channels, an attacker can learn prop-
erties of a secret (e.g., user’s password) by observing the time it takes
to perform some operation (e.g., password validation). Similarly,
compression side channel attacks allow adversaries to glean con�-
dential information merely by observing the size of the compressed
data (e.g., HTTP response). Numerous research papers and several
real-world exploits have shown that such side channel attacks are
both practical and harmful. For instance, side channels have been

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/10.1145/3133956.3134058

used to infer con�dential data involving user accounts [26, 38],
cryptographic keys [5, 19, 45], geographic locations [62], and medi-
cal data [22]. Recent work has shown that side channels can also
lead to information leakage in cyber-physical systems [23].

Side channel attacks are made possible due to the presence of
an underlying vulnerability in the system. For example, timing
attacks are feasible because the application exhibits di�erent timing
characteristics based on some properties of the secret. In general,
the most robust defense against side-channel attacks is to eradicate
the underlying vulnerabilities by ensuring that the resource usage
of the program (time, space, power etc.) does not vary with respect
to the secret. Unfortunately, it can be challenging to write programs
in away that follows this discipline, and side-channel vulnerabilities
continue to be uncovered on a regular basis in real-world security-
critical systems [5, 19, 36, 68].

Our goal in this paper is to help programmers develop side-
channel-free applications by automatically analyzing correlations
between variations in resource usage and di�erences in security-
sensitive data. In particular, given a program P and a “tolerable"
resource deviation � , we would like to verify that the resource usage
of P does not vary by more than � no matter what the value of the
secret. Following the terminology of Goguen and Meseguer [34],
we refer to this property as �-bounded non-interference. Intuitively,
a program that violates �-bounded non-interference for even large
values of � exhibits signi�cant secret-induced di�erences in re-
source usage.

The problem of verifying �-bounded non-interference is chal-
lenging for at least two reasons: First, the property that we would
like to verify is an instance of a so-called 2-safety property [66] that
requires reasoning about all possible interactions between pairs of
program executions. Said di�erently, a witness to the violation of
�-bounded interference consists of a pair of program runs on two
di�erent secrets. Unlike standard safety properties that have been
well-studied in veri�cation literature and for which many auto-
mated tools exist, checking 2-safety is known to be a much harder
problem. Furthermore, while checking 2-safety can in principle be
reduced to standard safety via so-called product construction [12, 14]
such a transformation either causes a blow-up in program size [12],
thereby resulting in scalability problems, or yields a program that
is practically very di�cult to verify [14].

In this work, we solve these challenges by combining relatively
lightweight static taint analysis with more precise relational veri�-
cation techniques for reasoning about k-safety (i.e., properties that
concern interactions between k program runs). Speci�cally, our
approach �rst uses taint information to identify so-called hot spots,
which are program fragments that have the potential to exhibit
a secret-induced imbalance in resource usage. We then use much

Session D3: Logical Side Channels CCS’17, October 30-November 3, 2017, Dallas, TX, USA

875

Themis

Decomposition Instead of Self-Composition for k-Safety

Timos Antopoulos, Paul Gazzillo, Michael Hicks†, Eric Koskinen, Tachio Terauchi‡, and Shiyi Wei†

Yale University † University of Maryland ‡ JAIST

Abstract

We describe a novel technique for proving k-safety prop-
erties (non-interference, determinism, etc.) via a decompo-
sition that enables one to leverage non-relational reasoning
techniques. The key is the inter-operation of the following
principles. First, we observe that many k-safety properties
of interest have a particular structure that we call -quotient
partitionability where is a k-ary formula. Second, we de-
velop a partitioning strategy of execution traces based on
the k-safety property � of interest such that if holds for
k traces then they must be in the same partition. Finally,
within a partition component Ti, we observe that we can
prove k-safety by instead proving a universal property: all
traces within the partition satisfy some common property Pi,
chosen to be strong enough that it implies the k-safety prop-
erty � of any k-tuple of traces in components Ti.

We apply this strategy to the task of discovering timing
side channels. A key feature of our approach is a demand-
driven partitioning strategy that uses high/low-annotated
regex-like trails to reason about one partition component
of execution traces at a time. We have applied our technique
in a prototype implementation tool called Blazer, based on
WALA, PPL, Z3, and the brics automaton library. We have
proved non-interference of (or synthesized an attack specifi-
cation for) 25 programs written in Java bytecode, including
7 classic examples from the literature, and 6 examples ex-
tracted from the DARPA STAC challenge problems.

1. Introduction

Validating a k-safety property is a difficult problem. Such
a property involves k runs of a program and, consequently,
validation requires establishing relationships between k dif-
ferent execution traces. One example property we are inter-
ested in is the absence of timing channels. This is a 2-safety
property: we want to show that no variation in timing can be
observed in any pair of traces whose computations use the
same public inputs but differing secrets, e.g., passwords or
encryption keys. In short, we want secrets’ values and tim-
ing to be uncorrelated.

It seems appealing to leverage the success of abstract in-
terpretation. Abstract interpretation-based tools enjoy rigor-
ous guarantees and provide formal proofs of various safety
and liveness properties. They also are efficient. Implementa-

tions such as ASTRÉE and INTERPROC are able to validate
properties of large C programs.

Abstract interpretation-based techniques focus on single
executions, but to prove k-safety properties we need to re-
late multiple executions. A clever way to do this is to em-
ploy self-composition [3, 23]: To reason about k runs of a
program, we can concatenate k copies of it (with variables
suitably renamed) and then assert a property that relates vari-
ables in different copies. For our timing channel property, we
could concatenate the program with itself, require that public
inputs to both copies be the same, and then assert that exe-
cution counters inserted for each copy are (approximately)
equal at the conclusion, despite allowed variation of secret
inputs. Self-composition, including clever improvements on
the basic idea [4], can be expensive due to state space explo-
sion. More recently, Sousa and Dillig [22] proposed Carte-
sian Hoare Logic (CHL) which allows stating and proving k-
wise relational properties. The structure of the logic permits
more efficient validation. Nonetheless, even CHL relies, at
least implicitly, on making k copies of the program, which
means that invariants are split across the product program
and key information is lost during fixpoint computation.

This paper. We depart from the composition-based strate-
gies and instead establish a novel decomposition methodol-
ogy that has the potential to check some k-safety properties
more efficiently than past work. It involves an idea we call
 -quotient partitionability, which we now explain.

Formally, a k-safety property [6, 23] can be stated as
follows. Let C be a program, and JCK be the set of exe-
cution traces of C. Then, a k-safety property has the form
8⇡1, . . . ,⇡k 2 JCKk. �(⇡1, . . . ,⇡k). For timing channels (a
2-safety property), �SC would have the form: in(⇡1) =low

in(⇡2)) time(⇡1) ⇡ time(⇡2). That is, if the public (i.e.,
low security) input variables of the two traces are the same
(while the secrets can vary arbitrarily), then the observed
running time is the same (up to the limits of the observer).

Proving a property � using our approach has three steps:

1. Define a quotient formula over k traces ⇡1, ...,⇡k. For
side-channel freedom, we let quotient SC(⇡1,⇡2) ,
in(⇡1) =low in(⇡2).

2. Define a method of decomposing sets of execution traces
of program C into a -quotient partition T. Formally, the

1 2016/11/16

Blazer

DifFuzz

Multi-run side-channel analysis using
Symbolic Execution and Max-SMT

Corina S. Păsăreanu
Carnegie Mellon University, NASA Ames

Moffet Field, CA, USA
corina.s.pasareanu@nasa.gov

Quoc-Sang Phan
Carnegie Mellon University

Moffet Field, CA, USA
sang.phan@sv.cmu.edu

Pasquale Malacaria
Queen Mary University of London

London, United Kingdom
p.malacaria@qmul.ac.uk

Abstract—Side-channel attacks recover confidential informa-
tion from non-functional characteristics of computations, such
as time or memory consumption. We describe a program anal-
ysis that uses symbolic execution to quantify the information
that is leaked to an attacker who makes multiple side-channel
measurements. The analysis also synthesizes the concrete public
inputs (the “attack”) that lead to maximum leakage, via a
novel reduction to Max-SMT solving over the constraints col-
lected with symbolic execution. Furthermore model counting and
information-theoretic metrics are used to compute an attacker’s
remaining uncertainty about a secret after a certain number
of side-channel measurements are made. We have implemented
the analysis in the Symbolic PathFinder tool and applied it in
the context of password checking and cryptographic functions,
showing how to obtain tight bounds on information leakage under
a small number of attack steps.

Index Terms—Side-Channel Attacks; Quantitative Information
Flow; Cryptography; Multi-run Security; Symbolic Execution;
Satisfiability Modulo Theories; Max-SMT

I. INTRODUCTION

Side-channel attacks recover secret inputs to programs from
non-functional characteristics of computations, such as time
consumed, number of memory accesses or size of output
files. Side-channel attacks have been shown to pose serious
threats by recovering cryptographic keys, e.g. when using the
well known RSA encryption/decryption algorithm [1], and
private information about users, e.g. as with commonly used
algorithms for data compression [2].

We propose a symbolic execution approach for the auto-
matic analysis of software that computes quantitative bounds
on the amount of information that can be leaked via side-
channel attacks. Technically we use the fact that the amount
of leaked information corresponds to the number of different
possible side-channel observations, which we compute using
symbolic execution and model counting via a reduction to
symbolic quantitative information flow analysis (QIF)[3], [4].
The analysis is parametrized by a cost model which allows
us to obtain side-channel measurements (time, memory, bytes
written to a file, etc.) from the execution of bytecode instruc-
tions. The “observables” are the values for the cost computed
for each path in the analyzed program. Furthermore we provide
a method for automatically deriving the public user input that
results into maximum leakage by using weighted Max-SMT
solving for which efficient procedures exist [5].

Our key insight is that Max-SMT solving can be used to
obtain the maximal assignment over the set of clauses obtained
with symbolic execution (i.e. any other assignment satisfies
less clauses) and this corresponds to the largest number of
observables that can be reached by a particular public input,
hence is the maximal leakage: any other choice of public input
would result in less observables. We show experimentally
that this new Max-SMT encoding can be more efficient than
established approaches based on bounded model checking over
program self-compositions [6] or on enumerating over the
concrete values.

Our Max-SMT approach generalizes naturally over
multiple-run side-channel attacks where we use symbolic
execution to quantify the information revealed to an attacker
after multiple channel measurements made. This corresponds
to a typical scenario where an attacker makes multiple guesses
by invoking and measuring the execution of the program
multiple times on different public inputs to gradually uncover
a secret that is constant across program runs (such as the secret
key used in the RSA encryption/decryption algorithm). Max-
SMT solving is used to compute a sequence of public inputs
that lead to maximum leakage, exposing the vulnerability of
the program to multi-run attacks.

Furthermore we show how to use an extension of symbolic
execution, namely with quantitative reasoning [7], [8], to
compute precise values for information theoretic metrics such
as Shannon or Smith’s min entropy [9]. The technique uses
model counting over the constraints collected by symbolic
execution, to compute the probability of executing different
program paths (under a user-specified profile). Thus we can
compute an attacker’s remaining uncertainty about a secret
after a number (k) of side-channel measurements made. We
can also determine whether a secret is fully revealed after k
runs or whether a program keeps leaking information after k
runs etc.

We have implemented the analysis in the Symbolic
PathFinder tool and show how to use it to measure side-
channel vulnerabilities for Java bytecode programs in the
presence of non-adaptive attacks. Our approach is general
and can be implemented easily in other symbolic execution
tools targeting other languages. We discuss the application
of our approach in the context of password checking and

MaxLeak

Challenges
How to go beyond non-

interference?

How to avoid expensive
symbolic execution?

How to scale to larger programs?

How to provide guarantees for
vulnerability?

Detection vs Quantification

Is there a vulnerability?
⇔

How much information can be leaked?

RQ2 Detection
Research Problem State of the Art Our Solution Example Evaluation Summary

13QFuzz: Quantitative Fuzzing for Side Channels
yannic.noller@acm.org
saeid@utep.edu

same vulnerabilities detected

large values for 3 may slow
down QFuzz, but eventually,
enable the exploration of many
partitions.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Yannic Noller and Saeid Tizpaz-Niari

Table 1: Comparison of partitioning algorithms (discrepancies are highlighted in red).

Subject n #Partitions Algorithm p pmax Xmax
Time (s)

? > 1 ?<0G C<8=
?<0G

Eclipse Jetty 1 1 17 Greedy 16.24 (+/- 0.24) 17 3 4.65 (+/- 0.10) 1436.16 (+/- 53.58) 675
KDynamic 16.59 (+/- 0.15) 17 3 4.54 (+/- 0.10) 1423.65 (+/- 51.89) 656

Eclipse Jetty 1 4 9 Greedy 8.63 (+/- 0.10) 9 6 31.20 (+/- 6.38) 1428.63 (+/- 56.03) 697
KDynamic 8.65 (+/- 0.12) 9 3 31.71 (+/- 6.53) 1394.75 (+/- 55.87) 669

Eclipse Jetty 4 1 9 Greedy 8.51 (+/- 0.09) 9 1 3.93 (+/- 0.11) 1426.89 (+/- 68.86) 496
KDynamic 8.45 (+/- 0.11) 9 1 4.15 (+/- 0.11) 1437.27 (+/- 66.16) 497

Eclipse Jetty 4 4 4 Greedy 3.94 (+/- 0.04) 4 5 28.50 (+/- 4.61) 1083.39 (+/- 59.33) 245
KDynamic 4.27 (+/- 0.08) 5 2 27.21 (+/- 4.07) 1678.88 (+/- 38.36) 599

Eclipse Jetty 5 1 1 Greedy 1.00 (+/- 0.00) 1 0 - 1.00 (+/- 0.00) 1
KDynamic 1.00 (+/- 0.00) 1 0 - 1.00 (+/- 0.00) 1

Eclipse Jetty 5 4 1 Greedy 1.00 (+/- 0.00) 1 0 - 1.00 (+/- 0.00) 1
KDynamic 1.00 (+/- 0.00) 1 0 - 1.00 (+/- 0.00) 1

Leak Set 1 1 13 Greedy 13.00 (+/- 0.00) 13 92 4.20 (+/- 0.07) 77.53 (+/- 8.31) 8
KDynamic 13.00 (+/- 0.00) 13 92 3.77 (+/- 0.09) 79.77 (+/- 9.36) 8

Leak Set 2 1 17 Greedy 17.00 (+/- 0.00) 17 92 4.13 (+/- 0.07) 389.46 (+/- 30.03) 93
KDynamic 16.99 (+/- 0.01) 17 92 3.73 (+/- 0.12) 379.14 (+/- 35.43) 42

Leak Set 3 1 21 Greedy 20.92 (+/- 0.04) 21 92 5.01 (+/- 0.01) 815.82 (+/- 72.93) 223
KDynamic 20.89 (+/- 0.05) 21 92 5.00 (+/- 0.00) 842.37 (+/- 78.11) 208

Leak Set 4 1 25 Greedy 24.39 (+/- 0.12) 25 92 5.00 (+/- 0.00) 1437.27 (+/- 72.39) 453
KDynamic 24.50 (+/- 0.11) 25 92 3.56 (+/- 0.13) 1389.97 (+/- 71.79) 268

Leak Set 5 1 29 Greedy 27.71 (+/- 0.17) 29 92 4.34 (+/- 0.08) 1668.63 (+/- 46.38) 405
KDynamic 27.66 (+/- 0.16) 29 92 3.77 (+/- 0.11) 1689.11 (+/- 44.18) 426

Apache WSS4J 1 17 Greedy 12.70 (+/- 0.40) 17 3 4.93 (+/- 0.13) 1772.50 (+/- 15.58) 1079
KDynamic 12.72 (+/- 0.41) 17 3 4.89 (+/- 0.13) 1772.54 (+/- 14.05) 1301

Table 2: The results of applying QF��� to the B����� benchmarks (discrepancies are highlighted in red).

Benchmark Version QF��� D��F��� Time (s)
?<0G X<0G X<0G QF���, ? > 1 D��F���, X > 0 B����� T�����

Array Safe 1 0 1 - 7.40 (+/- 1.21) 1.60 0.28
Array Unsafe 2 192 195 5.70 (+/- 0.21) 7.40 (+/- 0.93) 0.16 0.23
LoopAndbranch Safe 2 4 4,278,268,702 1045.33 (+/- 43.51) 18.60 (+/- 6.40) 0.23 0.33
LoopAndbranch Unsafe 2 4 4,294,838,782 1078.63 (+/- 61.04) 10.60 (+/- 2.62) 0.65 0.16
Sanity Safe 1 0 0 - - 0.63 0.41
Sanity Unsafe 2 3,537,954,539 4,290,510,883 1414.13 (+/- 102.27) 163 (+/- 40.63) 0.30 0.17
Straightline Safe 1 0 0 - - 0.21 0.49
Straightline Unsafe 2 8 8 7.47 (+/- 0.18) 14.60 (+/- 6.53) 22.20 5.30
unixlogin Safe - - 3 - 510 (+/- 91.18) 0.86 -
unixlogin Unsafe 2 6,400,000,008 3,200,000,008 1784.47 (+/- 21.27) 464.20 (+/- 64.61) 0.77 -
modPow1 Safe 1 0 0 - - 1.47 0.61
modPow1 Unsafe 22 117 3,068 4.73 (+/- 0.16) 4.80 (+/- 1.11) 218.54 14.16
modPow2 Safe 1 0 9 - - 1.62 0.75
modPow2 Unsafe 31 1 5,206 294.70 (+/- 104.66) 23.00 (+/- 3.48) 7813.68 141.36
passwordEq Safe 1 0 0.00 - - 2.70 1.10
passwordEq Unsafe 93 2 127 4.57 (+/- 0.22) 8.60 (+/-2.11) 1.30 0.39
k96 Safe 1 0 0 - - 0.70 0.61
k96 Unsafe 93 2 3,087,339 4.57 (+/- 0.22) 3.40 (+/- 0.98) 1.29 0.54
gpt14 Safe 12 1 517 5.00 (+/- 0.00) 4.20 (+/- 0.80) 1.43 0.46
gpt14 Unsafe 92 2 12,965,890 5.87 (+/- 0.12) 4.40 (+/- 1.03) 219.30 1.25
login Safe 1 0 0 - - 1.77 0.54
login Unsafe 17 2 62 7.77 (+/- 0.69) 10.00 (+/- 2.92) 1.79 0.70

5.5 Comparison with B�����, T�����, and
D��F��� (RQ2)

QF��� is useful for both the detection and quanti�cation of side
channels (SC), and hence, we can compare QF��� to detection
techniques. We compare QF��� with B����� [1], T����� [9], and
D��F��� [27], the three state-of-the-art SC detectors. Furthermore,
QF���’s implementation is an extension of D��F���, and therefore
can serve as a baseline with regard to side-channel detection.

The benchmark of the related studies include subjects mostly in
two variants: safe and unsafe. A safe variant is supposed to not show
any side-channel vulnerability, while the unsafe variant is known to
include a vulnerability. For unsafe subjects, QF��� should identify

at least 2 partitions. This indicates some measurable di�erences in
the public observations depend on the secret values. Consequently,
for safe subjects, QF��� should identify exactly one partition.

Tables 2, 3, and 4 show the corresponding results. The columns
for QF��� only show the ?<0G and X<0G since these parameters
are the most relevant ones in detecting side channels. In order to
compare the analysis time, we report the time untilQF��� identi�es
at least two partitions, which compares well with D��F���’s time
parameter X > 0. Our default value of = 100 was not applicable
to a few subjects: LoopAndBranch, Sanity, and UnixLogin because
they represent relatively expensive executions. As mentioned in
Section 4, the fuzzer performs concrete executions to collect the
observations. Since a large value of strongly in�uences the time

additional information about
the strength of leaks and the
exploitability of vulnerabilities

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Yannic Noller and Saeid Tizpaz-Niari

Table 5: The results of applying QF��� to the RSA subjects inM��L��� [29] (red highlighted exceeded the budget: timeout of
1 hour or memory of 8GB, blue highlighted partitions are below the maximum possible observation).

Modulo Len #Partitions QF��� (n=0, 1h) MaxLeak (default) MaxLeak (No solver)
? ?<0G Time (s): ?<0G C<8= #Obs Time (s) #Obs Time (s)

1717 3 7 7.00 (+/- 0.00) 7 1.00 (+/- 0.00) 1 6 20.892 9 1.047
1717 4 10 10.00 (+/- 0.00) 10 7.43 (+/- 0.45) 5 9 152.332 12 1.370
1717 5 13 13.00 (+/- 0.00) 13 20.40 (+/- 3.87) 6 12 839.788 15 2.916
1717 6 16 16.00 (+/- 0.00) 16 294.60 (+/- 53.17) 22 15 3731.328 18 8.006
1717 7 19 18.37 (+/- 0.25) 19 2484.30 (+/- 451.42) 385 > 4 h 21 19.241
1717 8 22 20.43 (+/- 0.45) 22 3168.07 (+/- 303.47) 508 > 4 h 24 91.821
1717 9 25 22.20 (+/- 0.36) 24 3489.03 (+/- 169.19) 1009 > 4 h > 8 GB
1717 10 28 24.40 (+/- 0.49) 27 3548.63 (+/- 57.73) 2929 > 4 h > 8 GB

834443 3 7 7.00 (+/- 0.00) 7 13.40 (+/- 1.96) 8 6 7.416 9 1.188
834443 4 10 10.00 (+/- 0.00) 10 40.33 (+/- 12.14) 6 9 42.684 12 1.385
834443 5 13 12.93 (+/- 0.09) 13 645.70 (+/- 329.43) 74 12 215.929 15 2.953
834443 6 16 15.40 (+/- 0.20) 16 2711.87 (+/- 433.23) 271 15 936.921 18 7.511
834443 7 19 16.80 (+/- 0.33) 18 3227.60 (+/- 275.29) 952 18 4021.150 21 19.068
834443 8 22 17.93 (+/- 0.54) 22 3556.70 (+/- 83.44) 2301 > 4 h 24 96.360
834443 9 25 20.13 (+/- 0.59) 24 3572.83 (+/- 37.16) 3110 > 4 h > 8 GB
834443 10 28 21.83 (+/- 0.46) 24 3504.13 (+/- 121.70) 1845 > 4 h > 8 GB

1964903306 3 7 6.47 (+/- 0.18) 7 2228.30 (+/- 542.13) 119 6 12.167 9 1.085
1964903306 4 10 8.67 (+/- 0.19) 10 3494.30 (+/- 203.69) 429 9 70.805 12 1.535
1964903306 5 13 10.70 (+/- 0.19) 12 3594.00 (+/- 11.56) 3420 12 2306.261 15 3.391
1964903306 6 16 12.90 (+/- 0.11) 13 1337.90 (+/- 443.89) 206 > 4 h 18 7.506
1964903306 7 19 14.10 (+/- 0.27) 15 2984.67 (+/- 362.05) 503 > 4 h 21 19.486
1964903306 8 22 15.33 (+/- 0.36) 17 3398.37 (+/- 204.45) 1411 > 4 h 24 98.325
1964903306 9 25 16.30 (+/- 0.51) 19 3562.33 (+/- 54.24) 2819 > 4 h > 8 GB
1964903306 10 28 17.30 (+/- 0.48) 20 3559.67 (+/- 77.72) 2390 > 4 h > 8 GB

leak whether the secret String contains a special character or not.
Although the quanti�cation of information leaks by QF��� is an
under-approximation of the true number of partitions (because of
its dynamic nature), it signi�cantly supports the understanding of
the vulnerability and the strength of leaks.

Answer RQ2 (Part 1/2): QF��� detects the same vulnerabilities
similar to state-of-the-art techniques. Furthermore, QF��� pro-
vides additional information about the strength of leaks and the
exploitability of vulnerabilities.

5.5.2 Results with regard to Analysis Time (RQ2/part2). Comparing
the fuzzing time to the �rst inputs that reveal more than 1 partition,
QF��� is considerably slower than the other techniques in some
cases. The large value in our experiments (usually = 100) trig-
gers a large number of concrete program executions during input
assessment in fuzzing. If the program executions are expensive as
well, then this can slow down the overall fuzzing campaign. On the
one hand, a large value for enables QF��� to identify up to par-
titions and may lead to a faster exploration via considering multiple
secret values. On the other hand, the large value slows down the
overall fuzzing process, as the input assessments take longer. The
choice of an appropriate value for remains a trade-o� between
many partition explorations and a few partition exploitations.

We also observed that in some cases QF��� is signi�cantly
faster than the static analysis techniques B����� and T����� (e.g.,
Straightline unsafe andmodPow1/2 unsafe). As reported inB����� [1],
for the long-running benchmarks B����� su�ers from the combi-
natorial growth of necessary expression comparisons. T����� can
improve but still su�ers for complex benchmarks. Note that both
techniques use taint analysis that is known to be computationally
expensive for languages with dynamic features such as J��� [23].

QF��� (as well as D��F���) uses a dynamic analysis, which outper-
forms static analysis in such cases.

Answer RQ2 (Part 2/2): Large values for may slow down
QF���, but eventually, enable the exploration of many partitions.
QF��� outperforms static analysis on complex benchmarks.

5.6 Comparison to M��L��� [29] on RSA
subjects (RQ3)

Pasareanu et al. [29] quantify information leaks using symbolic
execution and model counting (MaxSMT). In particular, they eval-
uate their approach on the implementations of fast modular ex-
ponentiation. Their cost model does not count executed bytecode
instructions, but counts the number of visited branches. To match
with their evaluations, we customized our cost model, reduced n to
zero, and increased the timeout of the experiments to one hour. To
enable a fair comparison, we reproducedM��L���’s results on our
experiment setup.

Table 5 shows the results for these experiments (similar to Figure
9 in [29]). The column Modulo denotes the modulo value used
for the modulo exponentiation, while the column Len denotes the
bitvector length of the secret. The column #Partitions shows the
groundtruth for the number of identi�able partitions. The true
number of partitions is formulated to be 3*(Len-1) in [29] for every
experiment. We noticed that the formulation is for Len>1, while
we also consider Len=1, which leads us to �nd one more partition.
Therefore, we report the #Partitions as: 3*(Len-1)+1. For QF���, we
report the average number of identi�ed partitions ? with the 95%
con�dence intervals, the maximum number of partitions ?<0G , the
average time to ?<0G , and the minimum time to ?<0G over all 30
runs. The results by [29] come in two modes: default and no solver.
The second one represents symbolic execution without �ltering

RQ3 Quantification
Research Problem State of the Art Our Solution Example Evaluation Summary

due to its dynamic analysis,
QFuzz is more scalable than
MaxLeak

QFuzz has precision
comparable to MaxLeak that
uses symbolic execution with
model counting

even for complex scenarios
QFuzz provides reasonable
lower-bound guarantees

14QFuzz: Quantitative Fuzzing for Side Channels
yannic.noller@acm.org
saeid@utep.edu

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Yannic Noller and Saeid Tizpaz-Niari

Table 5: The results of applying QF��� to the RSA subjects inM��L��� [29] (red highlighted exceeded the budget: timeout of
1 hour or memory of 8GB, blue highlighted partitions are below the maximum possible observation).

Modulo Len #Partitions QF��� (n=0, 1h) MaxLeak (default) MaxLeak (No solver)
? ?<0G Time (s): ?<0G C<8= #Obs Time (s) #Obs Time (s)

1717 3 7 7.00 (+/- 0.00) 7 1.00 (+/- 0.00) 1 6 20.892 9 1.047
1717 4 10 10.00 (+/- 0.00) 10 7.43 (+/- 0.45) 5 9 152.332 12 1.370
1717 5 13 13.00 (+/- 0.00) 13 20.40 (+/- 3.87) 6 12 839.788 15 2.916
1717 6 16 16.00 (+/- 0.00) 16 294.60 (+/- 53.17) 22 15 3731.328 18 8.006
1717 7 19 18.37 (+/- 0.25) 19 2484.30 (+/- 451.42) 385 > 4 h 21 19.241
1717 8 22 20.43 (+/- 0.45) 22 3168.07 (+/- 303.47) 508 > 4 h 24 91.821
1717 9 25 22.20 (+/- 0.36) 24 3489.03 (+/- 169.19) 1009 > 4 h > 8 GB
1717 10 28 24.40 (+/- 0.49) 27 3548.63 (+/- 57.73) 2929 > 4 h > 8 GB

834443 3 7 7.00 (+/- 0.00) 7 13.40 (+/- 1.96) 8 6 7.416 9 1.188
834443 4 10 10.00 (+/- 0.00) 10 40.33 (+/- 12.14) 6 9 42.684 12 1.385
834443 5 13 12.93 (+/- 0.09) 13 645.70 (+/- 329.43) 74 12 215.929 15 2.953
834443 6 16 15.40 (+/- 0.20) 16 2711.87 (+/- 433.23) 271 15 936.921 18 7.511
834443 7 19 16.80 (+/- 0.33) 18 3227.60 (+/- 275.29) 952 18 4021.150 21 19.068
834443 8 22 17.93 (+/- 0.54) 22 3556.70 (+/- 83.44) 2301 > 4 h 24 96.360
834443 9 25 20.13 (+/- 0.59) 24 3572.83 (+/- 37.16) 3110 > 4 h > 8 GB
834443 10 28 21.83 (+/- 0.46) 24 3504.13 (+/- 121.70) 1845 > 4 h > 8 GB

1964903306 3 7 6.47 (+/- 0.18) 7 2228.30 (+/- 542.13) 119 6 12.167 9 1.085
1964903306 4 10 8.67 (+/- 0.19) 10 3494.30 (+/- 203.69) 429 9 70.805 12 1.535
1964903306 5 13 10.70 (+/- 0.19) 12 3594.00 (+/- 11.56) 3420 12 2306.261 15 3.391
1964903306 6 16 12.90 (+/- 0.11) 13 1337.90 (+/- 443.89) 206 > 4 h 18 7.506
1964903306 7 19 14.10 (+/- 0.27) 15 2984.67 (+/- 362.05) 503 > 4 h 21 19.486
1964903306 8 22 15.33 (+/- 0.36) 17 3398.37 (+/- 204.45) 1411 > 4 h 24 98.325
1964903306 9 25 16.30 (+/- 0.51) 19 3562.33 (+/- 54.24) 2819 > 4 h > 8 GB
1964903306 10 28 17.30 (+/- 0.48) 20 3559.67 (+/- 77.72) 2390 > 4 h > 8 GB

leak whether the secret String contains a special character or not.
Although the quanti�cation of information leaks by QF��� is an
under-approximation of the true number of partitions (because of
its dynamic nature), it signi�cantly supports the understanding of
the vulnerability and the strength of leaks.

Answer RQ2 (Part 1/2): QF��� detects the same vulnerabilities
similar to state-of-the-art techniques. Furthermore, QF��� pro-
vides additional information about the strength of leaks and the
exploitability of vulnerabilities.

5.5.2 Results with regard to Analysis Time (RQ2/part2). Comparing
the fuzzing time to the �rst inputs that reveal more than 1 partition,
QF��� is considerably slower than the other techniques in some
cases. The large value in our experiments (usually = 100) trig-
gers a large number of concrete program executions during input
assessment in fuzzing. If the program executions are expensive as
well, then this can slow down the overall fuzzing campaign. On the
one hand, a large value for enables QF��� to identify up to par-
titions and may lead to a faster exploration via considering multiple
secret values. On the other hand, the large value slows down the
overall fuzzing process, as the input assessments take longer. The
choice of an appropriate value for remains a trade-o� between
many partition explorations and a few partition exploitations.

We also observed that in some cases QF��� is signi�cantly
faster than the static analysis techniques B����� and T����� (e.g.,
Straightline unsafe andmodPow1/2 unsafe). As reported inB����� [1],
for the long-running benchmarks B����� su�ers from the combi-
natorial growth of necessary expression comparisons. T����� can
improve but still su�ers for complex benchmarks. Note that both
techniques use taint analysis that is known to be computationally
expensive for languages with dynamic features such as J��� [23].

QF��� (as well as D��F���) uses a dynamic analysis, which outper-
forms static analysis in such cases.

Answer RQ2 (Part 2/2): Large values for may slow down
QF���, but eventually, enable the exploration of many partitions.
QF��� outperforms static analysis on complex benchmarks.

5.6 Comparison to M��L��� [29] on RSA
subjects (RQ3)

Pasareanu et al. [29] quantify information leaks using symbolic
execution and model counting (MaxSMT). In particular, they eval-
uate their approach on the implementations of fast modular ex-
ponentiation. Their cost model does not count executed bytecode
instructions, but counts the number of visited branches. To match
with their evaluations, we customized our cost model, reduced n to
zero, and increased the timeout of the experiments to one hour. To
enable a fair comparison, we reproducedM��L���’s results on our
experiment setup.

Table 5 shows the results for these experiments (similar to Figure
9 in [29]). The column Modulo denotes the modulo value used
for the modulo exponentiation, while the column Len denotes the
bitvector length of the secret. The column #Partitions shows the
groundtruth for the number of identi�able partitions. The true
number of partitions is formulated to be 3*(Len-1) in [29] for every
experiment. We noticed that the formulation is for Len>1, while
we also consider Len=1, which leads us to �nd one more partition.
Therefore, we report the #Partitions as: 3*(Len-1)+1. For QF���, we
report the average number of identi�ed partitions ? with the 95%
con�dence intervals, the maximum number of partitions ?<0G , the
average time to ?<0G , and the minimum time to ?<0G over all 30
runs. The results by [29] come in two modes: default and no solver.
The second one represents symbolic execution without �ltering

RQ3 Quantification
Research Problem State of the Art Our Solution Example Evaluation Summary

due to its dynamic analysis,
QFuzz is more scalable than
MaxLeak

QFuzz has precision
comparable to MaxLeak that
uses symbolic execution with
model counting

even for complex scenarios
QFuzz provides reasonable
lower-bound guarantees

14QFuzz: Quantitative Fuzzing for Side Channels
yannic.noller@acm.org
saeid@utep.edu

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Yannic Noller and Saeid Tizpaz-Niari

Table 5: The results of applying QF��� to the RSA subjects inM��L��� [29] (red highlighted exceeded the budget: timeout of
1 hour or memory of 8GB, blue highlighted partitions are below the maximum possible observation).

Modulo Len #Partitions QF��� (n=0, 1h) MaxLeak (default) MaxLeak (No solver)
? ?<0G Time (s): ?<0G C<8= #Obs Time (s) #Obs Time (s)

1717 3 7 7.00 (+/- 0.00) 7 1.00 (+/- 0.00) 1 6 20.892 9 1.047
1717 4 10 10.00 (+/- 0.00) 10 7.43 (+/- 0.45) 5 9 152.332 12 1.370
1717 5 13 13.00 (+/- 0.00) 13 20.40 (+/- 3.87) 6 12 839.788 15 2.916
1717 6 16 16.00 (+/- 0.00) 16 294.60 (+/- 53.17) 22 15 3731.328 18 8.006
1717 7 19 18.37 (+/- 0.25) 19 2484.30 (+/- 451.42) 385 > 4 h 21 19.241
1717 8 22 20.43 (+/- 0.45) 22 3168.07 (+/- 303.47) 508 > 4 h 24 91.821
1717 9 25 22.20 (+/- 0.36) 24 3489.03 (+/- 169.19) 1009 > 4 h > 8 GB
1717 10 28 24.40 (+/- 0.49) 27 3548.63 (+/- 57.73) 2929 > 4 h > 8 GB

834443 3 7 7.00 (+/- 0.00) 7 13.40 (+/- 1.96) 8 6 7.416 9 1.188
834443 4 10 10.00 (+/- 0.00) 10 40.33 (+/- 12.14) 6 9 42.684 12 1.385
834443 5 13 12.93 (+/- 0.09) 13 645.70 (+/- 329.43) 74 12 215.929 15 2.953
834443 6 16 15.40 (+/- 0.20) 16 2711.87 (+/- 433.23) 271 15 936.921 18 7.511
834443 7 19 16.80 (+/- 0.33) 18 3227.60 (+/- 275.29) 952 18 4021.150 21 19.068
834443 8 22 17.93 (+/- 0.54) 22 3556.70 (+/- 83.44) 2301 > 4 h 24 96.360
834443 9 25 20.13 (+/- 0.59) 24 3572.83 (+/- 37.16) 3110 > 4 h > 8 GB
834443 10 28 21.83 (+/- 0.46) 24 3504.13 (+/- 121.70) 1845 > 4 h > 8 GB

1964903306 3 7 6.47 (+/- 0.18) 7 2228.30 (+/- 542.13) 119 6 12.167 9 1.085
1964903306 4 10 8.67 (+/- 0.19) 10 3494.30 (+/- 203.69) 429 9 70.805 12 1.535
1964903306 5 13 10.70 (+/- 0.19) 12 3594.00 (+/- 11.56) 3420 12 2306.261 15 3.391
1964903306 6 16 12.90 (+/- 0.11) 13 1337.90 (+/- 443.89) 206 > 4 h 18 7.506
1964903306 7 19 14.10 (+/- 0.27) 15 2984.67 (+/- 362.05) 503 > 4 h 21 19.486
1964903306 8 22 15.33 (+/- 0.36) 17 3398.37 (+/- 204.45) 1411 > 4 h 24 98.325
1964903306 9 25 16.30 (+/- 0.51) 19 3562.33 (+/- 54.24) 2819 > 4 h > 8 GB
1964903306 10 28 17.30 (+/- 0.48) 20 3559.67 (+/- 77.72) 2390 > 4 h > 8 GB

leak whether the secret String contains a special character or not.
Although the quanti�cation of information leaks by QF��� is an
under-approximation of the true number of partitions (because of
its dynamic nature), it signi�cantly supports the understanding of
the vulnerability and the strength of leaks.

Answer RQ2 (Part 1/2): QF��� detects the same vulnerabilities
similar to state-of-the-art techniques. Furthermore, QF��� pro-
vides additional information about the strength of leaks and the
exploitability of vulnerabilities.

5.5.2 Results with regard to Analysis Time (RQ2/part2). Comparing
the fuzzing time to the �rst inputs that reveal more than 1 partition,
QF��� is considerably slower than the other techniques in some
cases. The large value in our experiments (usually = 100) trig-
gers a large number of concrete program executions during input
assessment in fuzzing. If the program executions are expensive as
well, then this can slow down the overall fuzzing campaign. On the
one hand, a large value for enables QF��� to identify up to par-
titions and may lead to a faster exploration via considering multiple
secret values. On the other hand, the large value slows down the
overall fuzzing process, as the input assessments take longer. The
choice of an appropriate value for remains a trade-o� between
many partition explorations and a few partition exploitations.

We also observed that in some cases QF��� is signi�cantly
faster than the static analysis techniques B����� and T����� (e.g.,
Straightline unsafe andmodPow1/2 unsafe). As reported inB����� [1],
for the long-running benchmarks B����� su�ers from the combi-
natorial growth of necessary expression comparisons. T����� can
improve but still su�ers for complex benchmarks. Note that both
techniques use taint analysis that is known to be computationally
expensive for languages with dynamic features such as J��� [23].

QF��� (as well as D��F���) uses a dynamic analysis, which outper-
forms static analysis in such cases.

Answer RQ2 (Part 2/2): Large values for may slow down
QF���, but eventually, enable the exploration of many partitions.
QF��� outperforms static analysis on complex benchmarks.

5.6 Comparison toM��L��� [29] on RSA
subjects (RQ3)

Pasareanu et al. [29] quantify information leaks using symbolic
execution and model counting (MaxSMT). In particular, they eval-
uate their approach on the implementations of fast modular ex-
ponentiation. Their cost model does not count executed bytecode
instructions, but counts the number of visited branches. To match
with their evaluations, we customized our cost model, reduced n to
zero, and increased the timeout of the experiments to one hour. To
enable a fair comparison, we reproducedM��L���’s results on our
experiment setup.

Table 5 shows the results for these experiments (similar to Figure
9 in [29]). The column Modulo denotes the modulo value used
for the modulo exponentiation, while the column Len denotes the
bitvector length of the secret. The column #Partitions shows the
groundtruth for the number of identi�able partitions. The true
number of partitions is formulated to be 3*(Len-1) in [29] for every
experiment. We noticed that the formulation is for Len>1, while
we also consider Len=1, which leads us to �nd one more partition.
Therefore, we report the #Partitions as: 3*(Len-1)+1. For QF���, we
report the average number of identi�ed partitions ? with the 95%
con�dence intervals, the maximum number of partitions ?<0G , the
average time to ?<0G , and the minimum time to ?<0G over all 30
runs. The results by [29] come in two modes: default and no solver.
The second one represents symbolic execution without �ltering

RQ3 Quantification
Research Problem State of the Art Our Solution Example Evaluation Summary

due to its dynamic analysis,
QFuzz is more scalable than
MaxLeak

QFuzz has precision
comparable to MaxLeak that
uses symbolic execution with
model counting

even for complex scenarios
QFuzz provides reasonable
lower-bound guarantees

14QFuzz: Quantitative Fuzzing for Side Channels
yannic.noller@acm.org
saeid@utep.edu

QFuzz: Workflow
Research Problem State of the Art Our Solution Example Evaluation Summary

yannic.noller@acm.org
saeid@utep.edu 8QFuzz: Quantitative Fuzzing for Side Channels

initial seed files

1
queue

2
trim input

3

mutate
repeatedly

4

mutated files that showed
(new) interesting behavior6

parse
input

5 mutant selection by input evaluation for
the instrumented program P

P[s1, y]
check for
improved
partitioning
or coverage

compute
partitions

P[s2, y]

P[sk, y]

a) #partitions k
b) minimum

distance !

c) program
coverage

…

c(s1, y),
cov1

c(s2, y),
cov2

c(s3, y),
covk

fuzzing driver

!"#!!,…,!",$ $"%&%(()&, + , … , ()', +) + (1 − 1().& ∗ ,)

Maximize number
of partitions

Maximize the difference
between the partitions

ISSTA 2021

