
Badger: Complexity Analysis with
Fuzzing and Symbolic Execution
Yannic Noller1, Rody Kersten2, Corina S. Păsăreanu3

Problem Overview

Symbolic Execution Side

Evaluation

!12yannic.noller@hu-berlin.de International Symposium on Software Testing and Analysis (ISSTA) 2018

Insertion Sort (N=64)

c
o
st

s
(#

 ju
m

p
s)

0

2500

5000

7500

10000

time (minutes)

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 300

Kelinci KelinciWCA
SymExe Badger

Badger gets final score by
KelinciWCA already after 1 hour

9533 18.73x

6701

3025

Badger after 20min: 9305 KelinciWCA 9305
after 2.85 hours

initial input
score: 509

9850 19.35x

!13yannic.noller@hu-berlin.de International Symposium on Software Testing and Analysis (ISSTA) 2018

Quicksort (N=64)

c
o
st

s
(#

 ju
m

p
s)

0

950

1900

2850

3800

time (minutes)

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 300

Kelinci KelinciWCA
SymExe Badger

3683 1.30x
3719 1.31x

3161
2970

initial input
score: 2829

no significant difference between
Badger and KelinciWCA

git clone https://github.com/isstac/badger.git yannic.noller@hu-berlin.de

Fuzzing Side

1 Humboldt-Universität zu Berlin, Germany

• combine fuzzing and symbolic
execution to find algorithmic
complexity vulnerabilities

• Badger, a framework for analysis of
Java applications

• handling of user-defined cost

Contribution
Our Contributions

!3yannic.noller@hu-berlin.de International Symposium on Software Testing and Analysis (ISSTA) 2018

• combine fuzzing and symbolic execution to
find algorithmic complexity vulnerabilities

int sumArg (int[] a) {

 int sum = 0;

 for (int i=0; i<a.length; i++){

 sum += a[i];

 }

 Kelinci.addCost(sum);

 return sum;

}

• Badger, a framework for analysis of Java
applications

• handling of user-defined cost

KelinciWCA (based on AFL) is a cost-
guided fuzzer; it prioritizes new inputs
that increase coverage or cost. It
supports the following cost metrics: 

• timing, by counting jumps in Java

byte-code  

• memory, by frequently polling the
current memory usage 

• user-defined, by instrumenting
program with special method call
Kelinci.addCost(int)

fuzzer

symbolic execution

exchange

interesting 

inputs

based on Symbolic PathFinder (SPF)

fuzzer and symbolic execution

run in parallel

increased
coverage or

increased cost

Algorithmic complexity analysis
enables developers to reason about
their programs, understand perfor-
mance bottlenecks, and reveal worst-
case complexity vulnerabilities.

Hybrid testing approaches that involve
fuzzing and symbolic execution have
shown promising results in achieving
high code coverage, uncovering vuln-
erabilities.

2 Synopsis, Inc., San Francisco, USA
3 Carnegie Mellon University Silicon Valley, NASA Ames Research Center, Moffett Field, USA

interesting input

import inputs

fuzzer

export inputs

SymExe
Trie Extension / 
Input Assessment

worst-case analysis

concolic execution
includes

Exploration
Input 
Generation

most promising node

trie-guided symbolic
execution

bounded symbolic
execution

model generation

input generation

new input

1

2

3
4

5

path condition

concrete execution of
inputs including: 

- trie construction/extension, 
- collection of path conditions, 

- score calculation

with Z3

heuristics: 
1. new branch 
2. score value 

3. position in trie

get to the
node by following
decisions in the

trie

ID Subject
1 Insertion Sort
2 Quicksort

3a Regular Expression (fixed input)
3b Regular Expression (fixed regex)
4 Hash Table
5 Compression
6 Image Processor
7 Smart Contract

!14yannic.noller@hu-berlin.de International Symposium on Software Testing and Analysis (ISSTA) 2018

Image Processor (2x2 JPEG)

c
o

st
s

(#
 ju

m
p

s)

0

100000

200000

300000

400000

time (minutes)

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 300

Kelinci KelinciWCA
SymExe Badger

193,730 22.24x

349,438 40.11x

291,384

188,719

initial input
score: 8712

RQ1: Since Badger combines fuzzing
and symbolic execution, is it better than
each part on their own (quality + speed)?
Badger always gets a better worst-case
then SymExe, and almost always better
than KelinciWCA. Badger ist faster than
each component itself.

RQ2: Is KelinciWCA better than Kelinci
(quality + speed)? Except for one case,
KelinciWCA is always better than Kelinci.

RQ3: Can Badger reveal worst-case
vulnerabilities? It performed well in
slowdowns and it revealed the actual
worst-case JPEG Image in Image
Processor.

