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ABSTRACT

Hybrid testing approaches that involve fuzz testing and symbolic
execution have shown promising results in achieving high code
coverage, uncovering subtle errors and vulnerabilities in a vari-
ety of software applications. In this paper we describe Badger -
a new hybrid approach for complexity analysis, with the goal of
discovering vulnerabilities which occur when the worst-case time
or space complexity of an application is significantly higher than
the average case.

Badger uses fuzz testing to generate a diverse set of inputs that
aim to increase not only coverage but also a resource-related cost
associated with each path. Since fuzzing may fail to execute deep
program paths due to its limited knowledge about the conditions
that influence these paths, we complement the analysis with a
symbolic execution, which is also customized to search for paths
that increase the resource-related cost. Symbolic execution is par-
ticularly good at generating inputs that satisfy various program
conditions but by itself suffers from path explosion. Therefore, Bad-
ger uses fuzzing and symbolic execution in tandem, to leverage
their benefits and overcome their weaknesses.

We implemented our approach for the analysis of Java programs,
based on Kelinci and Symbolic PathFinder. We evaluated Badger
on Java applications, showing that our approach is significantly
faster in generating worst-case executions compared to fuzzing or
symbolic execution on their own.
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1 INTRODUCTION

In recent years, fuzz testing has emerged as one of the most promis-
ing testing techniques for finding correctness bugs and security
vulnerabilities in software. It is used routinely by major software
companies such as Microsoft [14, 37] and Google [38]. While a large
fraction of the inputs generated with fuzzing may be invalid, it can
be more effective in practice than more sophisticated testing tech-
niques — such as the ones based on symbolic execution [13, 27] -
due to the low computation overhead involved in fuzzing.

Fuzz testing tools, such as AFL [41] and LiBFuzzEer [28], have
proven very successful by finding bugs and vulnerabilities in a
variety of applications, ranging from image processors and web
browsers to system libraries and various language interpreters. For
example, AFL was instrumental in finding several of the Stagefright
vulnerabilities in Android, the Shellshock related vulnerabilities in
BIND as well as numerous bugs in popular applications and libraries
such as OPENSSL, OPENSSH, GNUTLS, GNUPG, PHP, APACHE, and
IJG ypEG. In a nutshell, AFL uses genetic algorithms to mutate user-
provided inputs using byte-level operations. These mutations are
guided by coverage information obtained from running the ana-
lyzed program on the generated inputs. The interesting mutants
(that are shown to increase coverage) are saved and mutated again.
The process continues with the newly generated inputs, with the
goal of generating a diverse set of inputs that increase the coverage
of the program.

Motivated by the success of fuzz testing, we explore here the
application of the technique to algorithmic complexity analysis.
Characterizing the algorithmic complexity of a program has many
practical applications as it enables developers to reason about their
programs, understand performance bottlenecks and find opportu-
nities for compiler optimizations. Algorithmic complexity analysis
can also reveal worst-case complexity vulnerabilities, which occur
when the worst-case time or space complexity of an application is
significantly higher than the average case. In such situations, an
attacker can mount Denial-of-Service attacks by providing inputs
that trigger the worst-case behavior, thus preventing benign users
to use the application.

There are several challenges in adapting fuzz testing to algorith-
mic complexity analysis. First, fuzz testers like AFL are designed to
generate inputs that increase code coverage, while for complexity
analysis one is interested in generating inputs that trigger worst
case execution behavior of the programs. Furthermore, fuzzers are
known to be good at finding so called shallow bugs but they may fail
to execute deep program paths [31], i.e. paths that are guarded by
specific conditions in the code. This is due to the fact that the fuzzers
have little knowledge about which inputs affect which condition
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in the code. On the other hand, symbolic execution techniques are
particularly well suited to find such cases, but usually are much
more expensive in terms of computational resources required.

We therefore propose an analysis tool that uses fuzzing and
symbolic execution in tandem, to enable them to find worst case
program behaviors, while addressing their limitations. Specifically,
we present BADGER: a framework that combines fuzzing and sym-
bolic execution for automatically finding algorithmic complexity
vulnerabilities in Java applications.

Our hybrid approach works as follows. We first run a fuzzer
to generate a diverse set of inputs. For fuzzing, we build on Ke-
LINCI [20], an AFL-based fuzzer for Java programs. We modify Ke-
LincI and AFL to add a new heuristic to account for resource-usage
costs of program executions, meaning that the inputs generated
by the fuzzer are marked as important if they obtain either an
increased execution cost or new coverage. We call this tool Kk-
LINCIWCA. The cost is defined in terms of number of conditions
executed, actual execution time as well as user-defined costs that
allow us to keep track of memory and disk usage as well as other
resources of interest particular to an application.

The inputs generated by the fuzzer may cover a large set of
executions but may fail to exercise deep program behavior. This
can happen because of some hard-to-solve conditions that guard
deep executions, as discussed above. At some user-defined point
in time, the inputs are transferred to the symbolic execution side
which analyzes them with the goal of producing new inputs that
increase the cost and/or the coverage. These inputs are passed back
to the fuzzer and the process continues until a vulnerability is found
or a user-defined threshold is met.

For symbolic execution we use SymMBoLIC PATHFINDER (SPF),
a symbolic execution tool for Java bytecode [26]. We modified
SPF by adding a mixed concrete-symbolic execution mode, similar
to concolic execution [27] which allows us to import the inputs
generated on the fuzzing side and quickly reconstruct the symbolic
paths along the executions triggered by the concrete inputs. These
symbolic paths are then organized in a tree which is analyzed with
the goal of generating new inputs that expand the tree. The analysis
is guided by novel heuristics on the SPF side that favor new branches
that increase resource-costs. The newly generated inputs are passed
back to the fuzzing side.

A novelty of our approach is the handling of user-dependent
costs, which get translated into symbolic costs on the symbolic
execution side and are handled by running a symbolic maximiza-
tion procedure, to generate the worst-case inputs. This broadens
the application of BADGER over previous symbolic execution tech-
niques [5, 23], which could only handle simple, concrete costs.

Scalability is achieved in two ways. First, constraint solving is
turned off during concolic execution, and is used only for generat-
ing new inputs, when expanding the tree. This is done selectively,
guided by the heuristics. Furthermore, the tree is saved in memory,
and expanded incrementally, only when new inputs are generated.

We demonstrate how BADGER is able to find a large number of
inputs that trigger worst-case complexity in complex applications,
and we show that it performs better than its parts (i.e. fuzzing and
symbolic execution separately).

We note that we are not the first to use fuzzing and symbolic exe-
cution in a complementary manner. Tools such as MAYHEM [7] and
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DRILLER [31] are prominent examples. MAYHEM won first place at
the recent DARPA Cyber Challenge [35], and DRILLER later matched
those results. There are many other similar hybrid approaches,
which we discuss in Section 5. However, all these previous hybrid
approaches aim to increase code coverage and we believe that we
are the first to explore this combination for complexity analysis.
The recent work on SLowFuzz [24] explores fuzzing for worst-case
analysis (WCA). Although that work addresses binaries (and not
Java) and uses a different fuzzer [28], it is similar in spirit to our
KEeLINCIWCA tool. For this reason, we include in our experiments
Java versions of the same (or similar) examples as in [24]. While we
can not compare BADGER to SLowFuzz directly, we compare BAD-
GER with KELINCIWCA, which should give an indication whether a
combination of SLowFuzz with symbolic execution could achieve
similar benefits.

2 BACKGROUND

2.1 Fuzz Testing Java Programs with Kelinci

KEeLINCI is an interface to execute AFL on Java programs [20]. It
adds AFL-style instrumentation to Java programs and communi-
cates results back to a simple C program that interfaces with the AFL
fuzzer. This in turn behaves as a C program that was instrumented
by one of AFL’s compilers.

The first step when applying KeLiNcI is to add AFL-style instru-
mentation to a Java program. AFL uses a 64 kB region of shared
memory for communication with the target application. Each basic
block is instrumented with code that increments a location in the
shared memory bitmap corresponding to the branch made into this
basic block. The Java version of this instrumentation is the follow-
ing, which amounts to 12 bytecode instructions after compilation:

Mem.mem[id*Mem.prev_location]++;
Mem.prev_location = id >> 1;

In this example, the Mem class is the Java representation of the
shared memory and also holds the (shifted) id of the last program
location. The id of a basic block is a compile-time random integer,
where 0 < id < 65536 (the size of the shared memory bitmap). The
idea is that each jump from a block id1 to a block id2 is represented
by a location in the bitmap id1 @ id2. While obviously there may
be multiple jumps mapping to the same bitmap location, or even
multiple basic blocks which have the same id, such loss of precision
is considered rare enough to be an acceptable trade-off for efficiency.
The reason that the id of the previous location is shifted is that,
otherwise, it would be impossible to distinguish a jump id1 — id2
from a jump id2 — id1. Also, tight loops would all map to the
location 0, as id ® id = 0 for any id. Instrumentation is added to the
program at compile time using the ASM bytecode manipulation
framework [3].

Based on this lightweight instrumentation, AFL will prioritize
input files that lead to newly covered branches as ancestors for the
next generation of input files. KELINCI was used to find bugs in
various Java applications, including ApAcHE COMMONS IMAGING
and OPENJDK 9 [20].
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Figure 1: BADGER workflow. Dashed lines represent activi-
ties that happen in parallel to the main flow.

2.2 Symbolic Execution and Symbolic
PathFinder

Symbolic execution [10, 21] is a program analysis technique which
executes programs on symbols in place of concrete inputs. When
a decision is encountered, all branches are explored. Branch con-
ditions are aggregated into a path condition, a constraint over the
symbolic program inputs. Solving the path condition using an off-
the-shelf solver (e.g. Z3 [11]) can detect infeasible paths as well as
generate actual inputs (solutions of the constraint) that lead execu-
tion down the corresponding path. A typical use-case for symbolic
execution is test-case generation [4, 6, 10]. In many cases, it can
also detect faults directly [9, 14]. There are many other use-cases,
including security testing [7, 25, 31] and complexity analysis [5, 23].
The research presented in this paper is based on SymBoLric
PATHFINDER (SPF), which extends the JaAvA PATHFINDER frame-
work with a symbolic execution mode [26]. This mature symbolic
execution tool works on Java ByTECoDE and has support for most
language features such as all primitive data types, strings, com-
plex data structures, library calls, etc. It interfaces with a variety of
solvers to solve constraints generated by symbolic execution.

3 APPROACH

Figure 1 shows an overview of the BADGER workflow. The fuzzer
block is hatched because the detailed workflow in the fuzzer is omit-
ted in this figure. As discussed, BADGER has two main components:
fuzzing and symbolic execution (SymExe for short). Inputs are gen-
erated in an iterative manner, on both fuzzing and SymkExe sides,
and are transferred between the two components, to trigger gener-
ation of new inputs, as guided by heuristics for worst-case analysis.
Specifically, the fuzzer generates and exports inputs that are shown
to increase either coverage or cost on the fuzzer side; the specific
costs will be discussed in detail below. These inputs are imported
by SymExe (cf. label 1 in Figure 1). SymExe uses concolic execution
over the imported inputs to build a partial symbolic execution tree,
similar to the trie-based data structure by Yang et al. [40] (cf. label
2 in Figure 1). This trie captures the so-far explored portion of the
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symbolic execution paths, in which each node represents a decision
in the program that includes symbolic variables. The trie is saved
in memory and gets extended incrementally, whenever new inputs
are imported by SymExe. While the trie is constructed and updated,
it is also analyzed on-the-fly to compute the cost and coverage
achieved for each node. This information is used by heuristics for
worst-case analysis on the SymExe side to choose a node for further
exploration in order to produce new inputs that increase coverage
and/or cost.

In order to explore the chosen node, we first use a guided sym-
bolic execution until we reach the node of interest (cf. label 3 in
Figure 1). This can be done very efficiently, guided by the path in
the trie that leads to that node, and with constraint solving turned
off. After reaching the node of interest, we start a bounded symbolic
execution (BSE) with a specified depth to explore new paths and
generate corresponding new path conditions.

The collected path conditions are then solved to generate new
input files (cf. label 4 in Figure 1). Since the exploration is performed
on heuristically chosen nodes, and the newly generated inputs
follow new paths, which were not explored before, we need to
assess them, to measure their actual cost and the coverage achieved.
This is done by running again concolic execution over these newly
generated inputs, and updating/extending the trie in the process (cf.
label 2 in Figure 1). Only the inputs that are found to lead to new
interesting behavior (better cost or new coverage) are exported to
the fuzzer, which will use them for its own analysis (cf. label 5 in
Figure 1). The fuzzer will generate more inputs of interest, which
will be imported again by SymExe.

We group the steps labeled with 2 to 4 in the SymExe box, which
represents the symbolic execution component, and does not include
the interaction with the fuzzer. We note that in practice, we let BAD-
GER stay in SymExe for a specified number of iterations, i.e. it only
imports new input files from the fuzzer in intervals. The intuition is
to let SymExe work on its own, exploring several promising nodes,
rather than spending all its time importing information from the
fuzzer. Note that similarly, the fuzzer imports new files in intervals
(i.e. the havoc cycle in AFL).

BADGER uses KeLINcI for fuzzing and SPF for symbolic execution,
which are executed in parallel. Both tools have been extended to
search specifically for worst-case behavior w.r.t. a variety of cost
metrics. In the following, we explain both components in detail.

3.1 Fuzzing with KelinciWwCA

KeLINCIWCA extends KeLINCI with prioritization of costly paths.
Costs are collected on the Java side, then sent to AFL, which we also
modified to take into account the path costs (in addition to coverage).
The fuzzer maintains the current highscore with respect to the used
cost model. When creating the next generation of inputs, the fuzzer
selects ancestors from the set of inputs from the previous generation
that either lead to the execution of previously unexplored program
branches or to a new highscore. The chance that an input is selected
from this set depends on its cost, as recorded on the Java side.
There are three cost models available:

e Timing is measured by counting jumps (branches) in the
program. This is more precise than measuring wall clock
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time, as in the latter case, there are often outliers and other in-
consistencies due to, e.g., other activities on the machine. It is
efficiently measured by adding the statement Mem. jumps++
to the instrumentation trampoline, adding 4 bytecode in-
structions and bringing the total number to 16.

o Memory usage is measured by intermittent polling using a
timer. The maximum consumption at any point during exe-
cution of the program on the given input is collected. Though
measuring allocations using program instrumentation could
in some cases be more precise, it does not take into account
garbage collection, and it requires the program to determine
the sizes of individual objects which is expensive and can
also be inaccurate.

e User-defined costs can also be used. In this case, the user
instruments their program with calls to the special method
Kelinci.addCost(int), enabling the use of arbitrary met-
rics like the values of variables. Moreover, it allows a rela-
tionship between input and cost about which a machine can
reason. This will be used later by the symbolic execution
engine to directly generate inputs with maximal costs as an
optimization.

KeLINCIWCA inherits the ability of AFL to run in a parallel mode,
which enables the synchronization with other AFL instances. After
a configurable number of cycles with its own mutation operations
(i.e. havoc cycles), AFL checks the other instances for interesting
inputs. Since this synchronization procedure is merely based on
a specific folder structure, we can pass files from our symbolic
execution part to KELINCTWCA easily.

3.2 Example

Before describing the SymExe component of BADGER, we introduce
an example to illustrate how the various steps work. The example
is an implementation of Insertion Sort and is given in Listing 1.

o public static void sort(int[] a) {
1 final int N = a.length;

2 for (inti=1;i<N;i++){

3 intj=1i-1;

4 int x = a[i];

5 while ((j >= 0) && (a[3] > x)) {
6 a[j +1] =alj};

7 i-—

8 }

9 a[j +1]=x;

10 }

Listing 1: Insertion Sort

3.3 SymExe: Symbolic Execution with
Symbolic PathFinder

The SymExe component consists of three steps: trie extension and
input assessment (cf. label 2 in Figure 1), exploration (cf. label 3 in
Figure 1) and input generation (cf. label 4 in Figure 1). The following
sub sections will cover all parts.

Figure 2 shows snapshots of the trie while running SymExe
on Insertion Sort for three numbers (N=3). Note that trie nodes
correspond to decisions rather than conditions in the program;
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multiple trie nodes may correspond to a single program condition.
Since N has the concrete value 3, the only symbolic decision in
our program is a[j] > x on line 5. Therefore, all nodes in Figure 2
except the root nodes correspond to that decision.

3.3.1 Trie extension / input assessment. In this step, SymExe
performs a concolic execution over a set of concrete inputs (which
are generated either by the fuzzer or by SymExe itself) and updates
the trie data structure that maintains a view of all the explored
symbolic execution paths. This is done by adding a concolic mode
to SPF that simply collects the constraints along the concrete paths
(without any constraint solving) and using a listener to monitor the
execution and update the trie with newly explored nodes.

Figure 2a shows the trie for the initial input of the Insertion Sort
example. There are three nodes: the root node of the trie, and two
decisions for a[j] > x on line 5, which is the only condition that
depends on symbolic input. The last node (id=2) is a leaf, the last
decision on the execution trace for the initial input.

During concolic execution we perform a worst-case analysis
(WCA), to compute cost and coverage information for each node
in the trie. The default cost metric is timing, measured in number
of jumps (branches). Alternatively, WCA can collect user-defined
costs specified in the code with Observations.addCost(int). A
novelty of our approach is that we can handle symbolic (input-
dependent) costs as described in detail below.

Each trie node gets an associated score, indicating how promising
this node is with respect to the cost. A score reflects an estimation
of total costs that may be achieved rather than costs accumulated
so far along a path. The score of a leaf node is defined as the cost
associated with the path that ends in that leaf node; for example, it
could be the total number of branches executed to reach that node.
The scores for the internal nodes are propagated up in the trie, by
taking the average of children scores as the score for a parent node.
For our simple example in Figure 2a all nodes get the value 7 (after
importing one input) as the graph corresponds to a single path with
cost 7. Furthermore, coverage information for each node is updated.

The next step is to select the most promising node for further
exploration. Every node that has unexplored children is a candidate
for further exploration. We choose the most promising one based on
three criteria. First, nodes with unexplored choices leading to new
branch coverage are given priority; this means that if exploring a
node can potentially lead to new coverage, we consider it as a good
candidate for exploration. Second, nodes are ranked based on their
score; nodes with higher score will again be given priority. Third,
nodes are ranked based on their position in the trie. For the latter,
the tool is parametric with respect to two different heuristics:

(1) Prefer nodes higher in the trie. This follows the intuition of
exploring a wider region of the execution tree, covering a
wider input space, analogous to a breadth-first search.

(2) Prefer lower nodes. This follows the intuition to drill deeper
in a promising direction, where high costs have been ob-
served, analogous to depth-first search.

For the example in Figure 2a we apply the second heuristic, i.e. to
prefer nodes lower in the trie. Hence, the node with id=1 is chosen as
the most promising node instead of the root node. For the situation
in Figure 2c (which reflects the case when the import generated by
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id=1
line=5
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score=7.0

id=1

score=7.0

id=2
line=5

choice=0

score=7.0

(a) Trie extension with initial input. The
most promising node gets selected.

: lin.e:S id=2 id=2 id=3
: choice=0 line=5 line=5 line=5
\ score=7.0 choice=0 choice=0 :: choice=1 ::

pc=sym_0 <sym_1Asym_1>sym_2

(b) Exploration of chosen node with
depth=1. The extracted path condition
(pc) specifies input that reaches the
node with id=3 (the input is an array
[sym_0, sym_1, sym_2]).

score=7.0 \_ score=10.0 /

id=4
line=5
choice=0
score=10.0

(c) Assessment of generated input and ex-
tension of the trie. New most promising
node gets selected.

Figure 2: Trie evolution for Insertion Sort (N=3). The most promising node for the next exploration step is presented as hatched
node. Grey colored nodes denote leafs, i.e., the last decision of an execution trace.

SymExe itself is evaluated) it is clearly the node with id=3 because
it is the only node with score=10.0 that can be explored.

We note that the input assessment and the trie extension can
be executed in two modes: (1) import, and (2) export. The import
mode is used when importing input files from KELINCIWCA. There
is a special case when the user-defined cost metric is used: after
importing an input, SymExe tries to maximize the costs along the
concrete path by leveraging the maximizing procedures described
in Section 3.3.3. If successful, SymExe will immediately export the
maximizing input to the fuzzer. The export mode is used when it
is necessary to assess input files generated by SymExe. Executing
them with concolic execution (and on-the-fly WCA) reveals cost
values and extends the trie with new nodes. We use a conservative
approach to exporting input files to KELINCTWCA, because we do
not want to flood the fuzzer with irrelevant inputs. Only inputs
leading to new branch coverage or a new high score are exported.

3.3.2  Exploration. This step performs the actual exploration of
new parts of the trie. The goal is to explore new branches starting
from the node that was deemed most promising in the previous
step (this means that the new branches will likely increase coverage
or cost). This step involves a quick symbolic execution along the
trie path that reaches the node, as guided by the choices encoded in
the trie. There is no constraint solving needed. As soon as the node
of interest is reached, we switch to bounded symbolic execution
(BSE) to explore new decisions. When BSE reaches its bound we
extract the path condition(s) and pass them to the next step, which
will solve them to obtain new inputs.

In our example in Figure 2b the trie-guided symbolic execution
phase is very short, since only one choice is made to get to the
node with id=1. Next, we perform BSE with depth=1, i.e. only one
step, and reach the node with id=3. The score for this new node
is unknown because it is not the end of the execution trace. The
extracted path condition pc makes it possible to generate an input
value that reaches this new node. We will then need to run concolic

execution again, to assess this new input, to compute the scores
and update the trie (see Figure 2c).

3.3.3 Input Generation and Input-dependent Costs. In this step
we generate concrete inputs by solving the path conditions from
the previous step. This is done by using an off-the-shelve constraint
solver. For the example, the path condition sym_0 < sym_1 A
sym_1 > sym_2 may be solved to generate the input [1,1,0].
The solution(s) are used to generate a new input file (cf. step 5 in
Figure 1), which is application-dependent. Note that it could happen
that some path conditions are unsatisfiable, in which case no input
is generated for them.

The path condition from Figure 2b makes it possible to generate
an input value that follows a path along the node with id=3. As
shown in Figure 2c, this input leads to a leaf node with id=4, and to
a new high score, which is back-propagated to the precedent nodes.

As mentioned, the usage of heuristics makes it necessary to as-
sess the actual cost value of each input because it is not guaranteed
that the most promising nodes actually lead to worse costs. This
is done by passing the generated input back to the trie extension
phase and executing in export mode as described above.

A key novelty of our approach is the incorporation of symbolic
(input-dependent) costs, which require specialized techniques for
input generation. The user-specified costs allow to use arbitrary
variables in the program when specifying the cost, including input-
dependent ones. Thus, a symbolic path may have a symbolic cost,
i.e. a symbolic expression that is passed as a parameter to method
Observations.addCost(int). We are then interested in comput-
ing inputs that maximize this cost. To achieve this, we propose
to use an optimization procedure in the constraint solver. In our
set-up, we use Z3 [11], which allows to specify optimization ob-
Jjectives, i.e. we can ask Z3 to generate a model that maximizes a
given expression. We illustrate the approach on a simple example,
shown in Listing 2. If the user is interested in maximizing the value
of a variable (here sum), then simply counting jumps or measuring
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resource consumption will not be sufficient for the generation of
worst-case inputs.

o int sumArg(int[] a) {

1 int sum = 0;

2 for (int i=0; i < a.length; i++){
3 if (a[i] > 0)
4 sum += a[i];
5 else
6 sum —= a[i];

7}

s Observations.addCost(sum);
9  return sum;

10 }

Listing 2: User-Defined Cost Maximization Example

To address this situation, we instrument the code with a special
cost specification (line 8). When performing concolic execution over
sumArg for concrete input values a={1, 2}, variable sum at line 8
has the value sum=s;+sp and the path condition is s > 0 A sy > 0,
where s and sy are the corresponding symbolic inputs.

We can pass an optimization term to Z3 for the specified cost
expression. For example for two positive inputs the query to the
solver (in SMT 2 syntax) will look like:

(assert (> s; 0))
(assert (> s; 0))
(maximize (+ s; s2))

The retrieved model for the path condition will contain values
that maximize the given expression. Assume for simplicity that the
allowed range for the inputs is [-100, 100]. Then the maximization
procedure will return s; = 100, s = 100 which indicate the worst-
case inputs for this path.

4 EVALUATION

In this section we present an evaluation of our implementation for
BADGER. In order to enable the replication of our experiments and
to make our tool publicly available, we have released BADGER and
all evaluation artifacts on GitHub: https://github.com/isstac/badger.
We evaluate our approach to answer these research questions:

RQ1: Since BADGER combines fuzzing and symbolic execution, is
it better than each part on their own in terms of:
(a) Quality of the worst-case, and
(b) Speed ?
RQ2: Is KELINCTWCA better than KeLINCI in terms of:
(a) Quality of the worst-case, and
(b) Speed ?

RQ3: Can BADGER reveal worst-case vulnerabilities?

4.1 Experimental Setup

Subjects. Table 1 gives an overview of our evaluation subjects.
Subject 1 to 5 are similar to the benchmarks used in SLowFuzz.
Subject 6 represents an image processing application provided by
DARPA, as part of STAC engagements [33]. Subject 7 represents an
implementation of a smart contract for crypto-currency, translated
into Java from ETHEREUM, where the goal is to estimate the worst-
case gas consumption. For subject 1 to 6 we use the number of
jumps as cost metric. For subject 7 we use user-defined costs that
are specified directly in the code.

Yannic Noller, Rody Kersten, Corina S. Pasareanu

Table 1: Overview of the evaluation subjects.

ID | Subject || ID | Subject
1 Insertion Sort 4 | Hash Table
2 Quicksort 5 Compression

3a | RegEx (fixed input) || 6
3b | RegEx (fixed regex) || 7

Image Processor
Smart Contract

Experiment Execution. For all subjects we ran four variations:
(1) BADGER, (2) KELINCIWCA, (3) KELINCI and (4) SymExe. Success
of an evolutionary fuzzing tool can depend greatly on the corpus
of input files provided by the user as the first generation. For all
experiments, we chose a single file with meaningless values (e.g.
“Hello World”) to leave the heavy lifting to the tools. Running op-
tion (1) means to execute KELINCIWCA and SymExe in parallel.
KELINCIWCA starts with the initial input and SymExe imports the
inputs from KeLiNcIWCA like shown in Figure 1. Running option
(2) and (3) means simply to execute the tools, and option (4) means
to execute only SymExe on the initial input. We have observed in
pre-experiment executions that, for our subjects, after 5 hours the
compared tools reach a plateau. We therefore ran our experiments
for 5 hours, 5 times (deviations from this paradigm for particular
experiments are explained in the corresponding sections). We also
used these pre-experiment executions to determine the best fitting
heuristic for each application. Similar to Petsios et al. [24], we re-
port slowdown in the subjects, i.e. the ratio between the costs of
the observed worst case input and the initial input.

Infrastructure. All experiments were conducted on a machine
running oPENSUSE LEAP 42.3 featuring 8 Quad-Core-AMD 8384 2.7
GHz and 64 GB of memory. We used OpENJDK 1.8.0_151 and GCC
4.8.5. We configured the Java VM to use at most 10 GB of memory.

4.2 Sorting

We first evaluate our approach on two textbook examples: Insertion
Sort and Quicksort. We use the implementations from JDK 1.5.
Results for Insertion Sort are the averages of 5 runs. For quicksort
we deviated from the usual paradigm of 5 runs and performed 10
runs, because we observed a lot of variation in the first 5 runs. For
both subjects we used N=64, i.e. the input is an array of 64 integers.
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Figure 3: Results for Insertion Sort (N=64).

Results for Insertion Sort are shown in Figure 3. The score for
the initial input is 509. The tools reach the following averaged
final scores: BADGER 9850, KELINCTWCA 9533, KELINCI 6701, and
SymExe 3025. KELINCIWCA produces a slowdown of 18.73x. BADGER
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reaches the final score of KELINCcIWCA already after 61 minutes
(KELINCIWCA needs 219 minutes) and continues to improve to a
slowdown of 19.35x after 5 hours. It is thus better in terms of both
quality of the result, and speed. The symbolic execution component
SymExe by itself performs poorly, since it is only executed on the
initial input and cannot use intermediate results by KELINcTWCA.
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Figure 4: Results for Quicksort (N=64).

Results for Quicksort are shown in Figure 4. The score for the
initial input is 2829. The tools reach the following averaged final
scores: BADGER 3683, KELINCTWCA 3719, KeLINCI 3161, and SymExe
2970. There is no significant difference between the results for
BADGER and KELINCTWCA. BADGER tends to be faster in generating
a highscore between 20 and 150 minutes, but the final score after
300 minutes for KELINCTWCA is slightly better. BADGER produces a
slowdown of 1.30x and KELINCTWCA of 1.31x. This minor difference
at the end can be explained by the randomness inherent in fuzzing;
since BADGER includes KELINCIWCA, its results for a particular
run are always at least as good. In fact for the best run of the
10 performed, we observed that BADGER produced the score 4219
(1.49x), while KELINCTIWCA produced the score 4013 (1.42x).

4.3 Regular Expressions

The second evaluation considers regular expression matching, which
can be vulnerable to so called ReDoS (Regular expression DoS) at-
tacks. Specifically, we used the java.util.regex JDK package.
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Figure 5: Results for Regular Expression (fixed regex).
We performed two experiments. In the first, we fixed the match-
ing text and mutated the regular expression. We used the lorem
ipsum filler text, and limited mutated regular expressions to 10
characters. As initial input we used the regular expression [\s\S]*.
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We increased the number of experiments to 10 because we observed
too much variation in the first 5 runs.
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Figure 6: Results for Regular Expression (username).
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Figure 7: Results for Regular Expression (password).
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Figure 8: Results for Regular Expression (hexcolor).

Results are shown in Figure 5. The initial input score is 68101. The
tools reach the following average scores: BADGER 125616, KELINCI-
WCA 124641, KeLINcI 119393, and SymExe 1388. BADGER produces
a slowdown of 1.84x and KELINcIWCA of 1.83x. This insignificant
difference can be explained by the poor result for SymExe, which
was not able to improve the score of the initial input.

In the second experiment, we fix the regex and mutate the text.
We use the lorem ipsum as initial input again. For the regular expres-
sions we use ten popular examples [32]. Due to space limitations, we
include only the first three here, respectively matching a username,
password, and hexadecimal color code:

“la-z0-9-] {3, 15}$ (6}
(?=7d)(?="[a-z])(?="[A = Z])(?=""[@#$%]). {6, 20}) ()]
“#([A=Fa-f0-9]{6) | [A—Fa—f0-9]{3))$ 3)
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Results are shown in Figures 6, 7 and 8, respectively. Remarkably,
for the username regex, SymExe is faster than BADGER. This can be
explained by the fact that the initial input already leads to relatively
high costs; in general this is not the case. Additionally, SymExe starts
working right away, while BADGER needs some time to import input
files generated by KELINCTWCA (it is started with a slight delay).

Results for the password regex show that SymExe is not able to
generate any comparable highscore, which explains why BADGER
is not performing significantly better than KELINcTWCA.

For the color code regex, BADGER and KELINCTWCA both produce
a slowdown of 1.27x, but BADGER finds it significantly faster. By
leveraging the inputs generated by SymExe, BADGER reaches a
cost of 2800 after 25 minutes, for which KELINCIWCA needs 133
minutes. Interestingly, KeLinci is also faster than KELINCTWCA.
While statistically unlikely, this can happen due to the inherent
randomness in the fuzzer.

4.4 Hash Table

The fourth evaluation subject is a hash table implementation taken
from a recent DARPA engagement [33] and modified to match the
hash function by SLowFuzz [24], which was taken from a vulnerable
PHP implementation [34]. The size of the hash table is 64, each
key in the hash table has a length of 8 characters, and we fill it by
reading the first 64 - 8 characters from an input file. The worst-case
of a hash table implementation can be triggered by generating hash
collisions. Therefore, besides the normal costs, we also report the
number of hash collisions. We executed the experiments 10 times
because we observed too much variation in the first 5 runs.
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Figure 9: Results for Hash Table (N=64, key length=8).

The graph in Figure 9 shows that BADGER first performs slightly
better and faster, but is passed by KELINCcTWCA after 103 minutes.
This is based on SymExe, which quickly generates a very good
score, but is not able to further improve. Since we cannot report
the number of collisions for the averaged plot, we looked at the
best performing run for each experiment. The results correspond to
31 collisions found by BADGER, and 39 found by KELINCTWCA (the
theoretical upper bound is 63). This subject shows very evidently
the advantage of KELINCTWCA over KELINCI, which plateaus after
66 minutes and only finds 22 collisions.

4.5 Compression

Our fifth evaluation subject is taken from ApacHE CommoNs Com-
PRESS. In the experiment, we BZ1p2 compress files up to 250 bytes.
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Figure 10: Results for Compression (N=250).

Results are shown in Figure 10. The score for the initial input
is 1,505,039. The tools reach the following average scores: BADGER
1,800,831, KELINCTWCA 1,779,457, KELINCI 1,775,438, and SymExe
1,509,880. BADGER produces a slowdown of 1.20x and KELINCTWCA
of 1.18x. BADGER is significantly faster. The worst case found by
KeLiNcIWCA after 100 minutes is found by BADGER within 50
minutes.

4.6 Image Processor

Our sixth evaluation subject is an image processing application
taken from a recent DARPA engagement [33]. Our analysis revealed
a vulnerability related to particular pixel values in the input image
causing a significantly increased runtime for the program. These
pixel values trigger a particular value from a static array, which is
used to determine the number of iterations in a processing loop.
BADGER was able to automatically generate a JPEG image that
exposes the vulnerability. For the sake of simplicity, we limited the
size of images to 2x2 pixels.
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Figure 11: Results for Image Processor (2x2 JPEG).

Results are shown in Figure 11. Here we see that BADGER clearly
outperforms both its components. It produces a slowdown of 40.11x,
corresponding to theoretical worst-case, where all pixels have a
value triggering the highest possible number of iterations in the
processing loop.

4.7 Smart Contract

Our last subject is an implementation of a smart contract for cryp-
tocurrency, where the goal is to analyse the usage of a resource
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called gas of ETHEREUM software. Exceeding the allocated budget
could result in loss of cryptocurrency. Therefore we consider gas
as the user-defined cost in our analysis. We manually instrument
the code with calls to the special methods Kelinci.addCost(int),
and Observations.addCost(int). We executed the experiments
10 times because we observed too much variation in the first 5 runs.
For our experiments we used an input array size of N = 50 items.
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Figure 12: Results for Smart Contract (N=50).

Results are shown in Figure 12. We observed a cost of 3 for the
initial input. The tools reach the following average scores: BADGER
16,218,905, KELINCIWCA 11,934,664, KeLINCI 1,000,107, and SymExe
1,000,107. The increase in the cost is 5,406,301.67x for BADGER and
3,978,221.33x for KELINCIWCA. The cost depends on a concrete
value in the input and can thus be very large (even for a short path
the cost can be large if the input value is large). The initial input
does not contain these large values, and hence, the cost increase is
so dramatic. BADGER is significantly faster than KELINCTWCA, and
also produces a much higher worst case cost.

4.8 Discussion

RQ1.a. Our evaluation shows that, in terms of quality of the
worst case, BADGER is always better than SymExe because even-
tually BADGER will use the insights of its symbolic execution part.
But, as mentioned earlier, BADGER does not consider inputs from
SymExe until they are imported by KELINcTWCA. Additionally, the
randomness from the fuzzer can cause SymExe to explore other
paths that turn out to be less costly than those closer to the initial
input. In most of our subjects, BADGER also produces a better worst
case than KELINCIWCA. There are two cases in which KELINCTWCA
is slightly better than BADGER: Quicksort and Hash Table. These
differences are based on the randomness in the fuzzing component
of our approach. Therefore, we conclude question RQ1.a with the
positive answer: yes. Note that in practice, a slightly lower worst
case is often more useful if it can be obtained significantly faster.

RQ1.b. Our evaluation demonstrates that BADGER is significantly
faster than KELINCTWCA and SymExe, attesting a clear positive
answer to RQ1.b. In most cases, SymExe by itself performs poorly
compared to BADGER. Nevertheless, there is one case where SymExe
is able to generate a high score very fast, and BADGER is not able
to follow immediately: Regular Expression (username). We explain
this by the random initial input, along which path SymExe finds a
high score very quickly, whereas BADGER experiences some delay
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in importing KELINCTWCA results that also sidetrack the analysis.
Note that, similar to KELINCIWCA, BADGER can achieve better per-
formance through parallelization by, e.g., running multiple fuzzing
instances in parallel.

RQ2.a. The evaluation shows that KELINCIWCA is always better
than KeLINCI in terms of quality of the worst case. Although there
are cases, in which KeLincr performs not bad, the single focus on
coverage limits KeLINcI for worst case analysis. This limitation of
KEeLINCI was eliminated with KELINCIWCA.

RQ2.b. Regarding the speed comparison between KELINCTWCA
and KELINCI, our evaluation illustrates that in almost all subjects
KeLINCIWCA does not only retrieves a better worst case, but it
also achieves this in shorter time. The only exception is the subject
Regular Expression (hexcolor). In general, KELINCTWCA is faster,
but in cases where for a particular application higher coverage
implies a better worst case, then KeLINCI might be more efficient.

RQ3. We have shown that Badger performed well in our ex-
periments, finding slowdowns on the subjects. Notably, BADGER
identified a vulnerability in Image Processor, a complex applica-
tion that processes non-trivial inputs (i.e. JPEG images). BADGER
was able to reveal the actual worst-case by building a JPEG image,
demonstrating its ability in exposing vulnerabilities in complex
applications.

4.9 Threats to Validity

Internal Validity. The main threat to internal validity is the cor-
rectness of collection and analysis of experimental results. There-
fore, we fully automated the process of collecting data, aggregating
values and plotting graphs. Another threat to internal validity is the
selection of experiment parameters, such as the heuristic worst case
analysis. In order to verify this we conduced pre-experimental tests
that showed the effectiveness of our selection. Additionally, in our
experiments with BADGER, we used one process for KELINCTWCA
and one for SymExe. In the experiments with the individual tools,
each ran on a single core. This could give the combination of the
tools an advantage. In future work, we plan to parallelize SymExe,
which is expected to further improve the effectiveness of BADGER,
and also will enable a more fair comparison.

External Validity. The main threat to external validity is that
evaluation subjects may not generalize. In order to mitigate this
threat we have selected benchmarks that match existing work in
the field, and added a real-world (complex) example.

Construct Validity. The main threat to construct validity is the
correctness of our actual implementation. We based our imple-
mentation on SPF and KeLINCI, and hence, our adaptions inherit
potential incorrectness of these tools. However, face-validity shows
that our evaluation results match the expected outcome.

5 RELATED WORK

SrowFuzz [24] is a fuzzer based on LiBFuzzer [28] that prioritizes
inputs that lead to increased execution times. The tool is similar
to our KELINCTWCA component, although it addresses a different
programing language. Our evaluation is partially based on the
SLowFuzz evaluation and not surprisingly results obtained with
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KeLINCIWCA are similar to those for SLowFuzz. Furthermore, our
experiments with BADGER indicate that a combination of SLowFuzz
with symbolic execution would achieve similar benefits.

Several tools explore the combination of symbolic execution
with fuzzing. All these tools aim to increase coverage while our
goal is to generate inputs that excersise behaviors that increase
resource consumption, leading to significant technical differences.

EvoSurTE [12] is a test-case generation tool for Java, based on
evolutionary algorithms and dynamic symbolic execution. Unit tests
are generated via random mutation, recombination and selection
and are evaluated with respect to a given fitness function (typically
a coverage metric). When a change in fitness is observed after
mutation of a certain primitive value, the variable this value is
assigned to is deemed important and dynamic symbolic execution
is invoked with this variable as a symbol.

SAGE (Scalable Automated Guided Execution) [14] extends dy-
namic symbolic execution with a generational search that, instead
of negating only the final condition of a complete symbolic exe-
cution, negates all conditions on the path. Solving the resulting
path conditions results in a large number of new test inputs. SAGE
is used extensively at Microsoft where it has been successful at
finding many security-related bugs.

MavHEM [7] is a symbolic execution engine that aims to find
security vulnerabilities in binaries. A Concrete Executor Client (CEC)
explores paths concretely and performs a dynamic taint analysis.
When a basic block is reached that contains tainted instructions, it
is passed to the Symbolic Executor Server (SES) that is running in
parallel. After symbolic execution, the SES instructs the CEC on a
particular path to execute. MAYHEM was combined with the MURPHY
fuzzer and won the 2016 DARPA Cyber Grand Challenge [36].

DRILLER [31] is another promising tool that combines the AFL
fuzzer with the ANGR symbolic execution engine and that has
achieved similar results to Mayhem. It is very similar to our ap-
proach, in that it executes a fuzzer and symbolic execution engine
in parallel, combining their strengths and overcoming their weak-
nesses. However, while DRILLER is optimized for uncovering new
branches, we focus on worst-case analysis.

Symbolic execution was used before for worst-case analysis [5,
23]. WISE [5] analyzes programs for small input configurations
using concolic execution and attempts to learn a path policy that
likely leads to worst-case executions at any size. This policy is then
applied to programs that have larger input configurations, to guide
the symbolic execution of the program. SPF-WCA [23] uses SPF to
perform a similar analysis with more sophisticated path policies,
which take into account the history of executions and the calling
context of the analyzed procedures. In addition, SPF-WCA also
uses function fitting to obtain estimates of the asymptotic com-
plexity. Both WISE and SPF-WCA require to perform exhaustive
symbolic execution for large enough input sizes to obtain good
policies, which may not be feasible in practice. Furthermore, both
techniques only consider one input parameter for size and usu-
ally require some manual fine tuning (e.g. for SPF-WCA manually
decide the size of the history). In contrast, our technique uses a
combination with fuzzing to avoid a full exhaustive symbolic exe-
cution and is fully automatic (except for the creation of drivers that
are necessary for all of these approaches). Furthermore, BADGER

Yannic Noller, Rody Kersten, Corina S. Pasareanu

enables analysis with input-dependent costs, using a novel max-
imization technique. This significantly broadens the application
scope of BADGER w.r.t. previous techniques, which only support
simple, fixed costs associated with each program path.

Load testing [42] employs symbolic execution to perform an
iterative analysis for increasing exploration depth, with pruning
of paths with low resource consumption. That work could not be
used directly for finding the worst-case algorithmic behavior, since
all the paths are explored up to the same depth, and therefore have
the same number of steps.

Probabilistic symbolic execution is used in [8] to infer the perfor-
mance distribution of a program according to given usage profiles.
Although promising, the technique does not yet scale for large
programs, due to the more involved probabilistic computation.

Static analysis is used in [1, 16, 17, 30] to compute conservative
bounds on looping programs. In contrast to this work, our tool pro-
duces actual inputs that expose vulnerabilities, but can not provide
guarantees on worst-case bounds. There is also a large body of work
on worst-case execution time (WCET) analysis—in particular for
real-time systems [18, 19, 22, 39]. Unlike our work, these techniques
typically assume that loops have finite bounds and are independent
of input, and estimate worst-case execution for specific platforms.

Profilers [2, 15, 29] are typically used for performance analysis
of programs, but are inherently limited by the quality of tests used.
In our work we aim to automatically generate input data triggering
a diverse set of executions, including the worst-case ones.

6 CONCLUSIONS AND FUTURE WORK

We have proposed BADGER, a hybrid testing approach for com-
plexity analysis. It extends the KeLincI fuzzer with a worst-case
analysis, and uses a modified version of SymBoLric PATHFINDER
to import inputs from the fuzzer, analyze them and generate new
inputs that increase both coverage and execution cost. BADGER can
use various cost models, such as time and memory consumption,
and also supports the specification of input-dependent costs. BAD-
GER was evaluated against a large set of benchmarks, demonstrating
the performance and quality benefits over fuzzing and symbolic
execution by themselves.

In the future, we plan to explore more heuristics for worst-case
analysis on both the fuzzing and the symbolic execution side. We
also plan to focus more on the symbolic execution part of BADGER
and conduct experiments using multiple depths during bounded
symbolic execution. Additionally, we plan to explore techniques to
increase scalability of the symbolic execution part by, e.g., limiting
the size of the trie, which would lead to a faster exploration of the
upper symbolic execution tree. Furthermore, we plan to extend our
approach not only for complexity analysis, but also for a differential
side-channel analysis of security-relevant applications.
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