
Trust Enhancement Issues 
in Program Repair
Yannic Noller*
Ridwan Shariffdeen*
Xiang Gao
Abhik Roychoudhury

yannic.noller@nus.edu.sg 1ICSE‘2022 – Trust Enhancement Issues in Program Repair

*Joint first authors



(Automated) Program Repair

ProgramInput Output
unexpected behavior
à bug detected❌(Buggy)

How to 
resolve?

Fault / Fix 
Localization

Validation Program 
Modification

✅

can be very tedious
… and time consuming

à Automated program repair

⚡

yannic.noller@nus.edu.sg 2ICSE‘2022 – Trust Enhancement Issues in Program Repair

Problem Overview Developer Survey Experiments Conclusion



Questions for Automated Program 
Repair (APR) in practice
❏ How do developers want to use APR?
❏ Would they trust auto-generated patches and accept them?
❏ What kind of additional inputs can developers provide and

how would these inputs impact the trustworthiness of the patches?
❏ Do current APR techniques fulfill requirements by developers?

Problem Overview Developer Survey Experiments Conclusion

yannic.noller@nus.edu.sg 3ICSE‘2022 – Trust Enhancement Issues in Program Repair



1. Developer Survey

C1 Usage of APR
C2 Availability of inputs/specification
C3 Impact on trust
C4 Explanations
C5 Usage of APR side-products
C6 Background

2. Experimental Evaluation

(1) Constraints by developers
(2) Impact of additional inputs

GenProg
Angelix
Prophet
Fix2Fit
CPR

wide-spectrum of
APR techniques

Problem Overview Developer Survey Experiments Conclusion

yannic.noller@nus.edu.sg 4ICSE‘2022 – Trust Enhancement Issues in Program Repair

https://doi.org/10.5281/zenodo.5376903

https://doi.org/10.5281/zenodo.5376903


Survey Distribution
Problem Overview Developer Survey Experiments Conclusion

yannic.noller@nus.edu.sg 5ICSE‘2022 – Trust Enhancement Issues in Program Repair

❏ approval from the
Institutional
Review Board (IRB) 

❏ two channels: 
(1) Amazon MTurk, and
(2) Personalized email invitations

to contacts from global-wide
companies

❏ incentives: 10 USD for
participants on MTurk; 
otherwise we donated 2 USD 
to a COVID-19 charity fund

❏ 35 questions (5-point Likert
scale, multiple choice, open-
ended and close-ended
questions)



1. Developer Survey

RQ1 To what extent are the developers ready to accept and apply automated
program repair (APR)?

RQ2 Can software developers provide additional inputs that would cause higher
trust in generated patches? If yes, what kind of inputs can they provide?

RQ3 What evidence from APR will increase developer trust in the patches
produced?

Research Questions (1/2)

Problem Overview Developer Survey Experiments Conclusion

yannic.noller@nus.edu.sg 6ICSE‘2022 – Trust Enhancement Issues in Program Repair



Demographics
Problem Overview Developer Survey Experiments Conclusion

2
3
7

13
78

0 20 40 60 80

Tech Lead
Research Engineer

QA Engineer
Software Architect

Software Developer

number of responses

47
45

11

0 10 20 30 40 50

> 5 years

1-2 years

number of responses❏ 103 software practitioners
❏ 89% with 2+ years experience
❏ 75% Software Developers

yannic.noller@nus.edu.sg 7ICSE‘2022 – Trust Enhancement Issues in Program Repair



RQ1: Acceptability of APR
Problem Overview Developer Survey Experiments Conclusion

72%

21%

7%

0%
10%
20%
30%
40%
50%
60%
70%
80%

Yes Neutral No

Q1.1 Are you willing to review patches that are 
submitted by APR techniques? Full developer trust requires 

manual patch review.

Integration into existing DevOps 
pipelines.

Primary Goal: Save time for 
developers.

yannic.noller@nus.edu.sg 8ICSE‘2022 – Trust Enhancement Issues in Program Repair



RQ1: Interaction with APR
Problem Overview Developer Survey Experiments Conclusion

Q1.2 How many patches?

6%
3%
4%

22%
72%

87%
93%

0% 20% 40% 60% 80% 100%

it depends
more than 50 patches

up to 50 patches
up to 10 patches

up to 5 patches
up to 2 patches

1 patch

Q1.3 What is an acceptable timeout for APR?

97%
76%

51%
34%

19%
15%

7%
3%

0% 20% 40% 60% 80% 100%

up to 10 min
up to 30 min
up to 1 hour

up to 2 hours
up to 10 hours
up to 24 hours

more than 24 hours
it depends

à Timeout 1 hour and Top-5 Patches

yannic.noller@nus.edu.sg 9ICSE‘2022 – Trust Enhancement Issues in Program Repair



Q2.1 Additional Test 
Cases

Q2.2 Additional Program 
Assertions

Problem Overview Developer Survey Experiments Conclusion

RQ2: Artifact Availability

69%

24%

7%

0%
10%
20%
30%
40%
50%
60%
70%
80%

Yes Neutral No

71%

19%
10%

0%
10%
20%
30%
40%
50%
60%
70%
80%

Yes Neutral No

59%

22% 18%

0%
10%
20%
30%
40%
50%
60%
70%

Yes Neutral No

Q2.3 Additional Logical 
Constraints

Other artifacts include: execution logs and relevant source code locations. 

yannic.noller@nus.edu.sg 10ICSE‘2022 – Trust Enhancement Issues in Program Repair



Q3.2 Which of the following additional artifacts will 
increase your trust?

Problem Overview Developer Survey Experiments Conclusion

RQ2: Impact on Trust

Additional test cases would have a great impact 
on the trustworthiness of APR.

1%

59%

68%

70%

93%

0% 20% 40% 60% 80% 100%

None of the above

User Queries

Program Assertions

Logical Constraints

Test Cases

yannic.noller@nus.edu.sg 11ICSE‘2022 – Trust Enhancement Issues in Program Repair



Problem Overview Developer Survey Experiments Conclusion

RQ3: Patch Explanations
Evidence is needed to efficiently

select patch candidates.

For example: code coverage and 
the ratio of the covered input 

space. 

APR side-products can assist 
manual patch validation.

1%
69%

79%
85%

0% 20% 40% 60% 80% 100%

None of the above
Auto-generated repair constraints

Auto-generated test-cases
Identified Fault/Fix Locations

1%
49%
53%
59%

75%
82%

0% 20% 40% 60% 80% 100%

None of the above
A fix template for the bug type

Variables/Components
Auto-generated repair constraints

Auto-generated test-cases
Identified Fault/Fix Locations

Q5.1 APR side-products helpful to 
validate the patch?

Q5.2 APR side-products helpful to create the 
patch yourself?

yannic.noller@nus.edu.sg 12ICSE‘2022 – Trust Enhancement Issues in Program Repair



RQ4 Can existing APR techniques pinpoint high-quality patches in the top-
ranking (e.g., among top-10) patches within a tolerable time limit (e.g., 1 
hour)?

RQ5 What is the impact of additional inputs (say, fix locations and additional 
passing test cases) on the efficacy of APR?

Research Questions (2/2)

Problem Overview Developer Survey Experiments Conclusion

yannic.noller@nus.edu.sg 13ICSE‘2022 – Trust Enhancement Issues in Program Repair

GenProg
Angelix
Prophet
Fix2Fit
CPR

Tools/
Techniques

q investigate specific aspects concerning the 
adoption of program repair

q default parameter settings instead of fine-
tuning or extending the tools

q use strict timeouts and computation power 
restrictions



Experimental Setup
Problem Overview Developer Survey Experiments Conclusion

ID Fix Locations Passing Tests Timeout

EC1 Tool fault localization 100% 1hr

EC2 Developer fix location 100% 1hr

EC3 Developer fix location 0% 1hr

EC4 Developer fix location 50% 1hr

Experiment Configurations

Program Description LOC Defects Test

LibTIFF Image processing library 77k 7 78

lighttpd Web server 62k 2 295

PHP Interpreter 1046k 43 8671

GMP Math Library 145k 1 146

Gzip Data compression program 491k 3 12

Python Interpreter 407k 4 355

ManyBugs Benchmark

yannic.noller@nus.edu.sg 14ICSE‘2022 – Trust Enhancement Issues in Program Repair



What do we learn from this?

Problem Overview Developer Survey Experiments Conclusion

Under our tight constraints (i.e., a strict 
1-hour timeout and the top-10

ranking restriction), the state-of-the-art 
repair techniques cannot identify many 

plausible patches.

RQ4: Repair Sucess

yannic.noller@nus.edu.sg 15ICSE‘2022 – Trust Enhancement Issues in Program Repair

Automated program repair 
tools are only beginning to 
gain adoption, and are still 
an emerging technology. 

Can we identify what it 
would take to increase
the adoption of program 

repair? 
Let’s inspect the results 

closer on the next slides.



Program #Vul Angelix Prophet GenProg Fix2Fit

LibTIFF 7 3 1 5 5

Lighttpd 2 0 1 1 1

PHP 43 0 0 0 8

GMP 1 0 0 0 0

GZip 3 0 0 0 0

Python 4 0 0 0 0

Total 60 3 2 6 14

Plausible Patches generated by APR for ManyBugs benchmark 
in 1h timeout using the tool’s own fault localization (EC1).

Problem Overview Developer Survey Experiments Conclusion

RQ4: Plausible Patches
1-hour timeout is a difficult 

constraint for current 
techniques

yannic.noller@nus.edu.sg 16ICSE‘2022 – Trust Enhancement Issues in Program Repair

prior experiments evaluated 
the capability to generate a 

patch 

Note: scenario-specific 
parameter fine-tuning can 

affect the results greatly



Problem Overview Developer Survey Experiments Conclusion

Program #Vul Angelix Prophet GenProg Fix2Fit

LibTIFF 7 86 25 1 100

Lighttpd 2 0 20 1 100

PHP 43 96 23 1 63

GMP 1 100 41 5 0

GZip 3 100 6 18 100

Python 4 0 15 2 0

Total 60 95 22 5 91

Exploration Ratio by APR for ManyBugs benchmark in 1h 
timeout using the tool’s own fault localization (EC1).

a large/rich search space
requires an efficient 
exploration strategy

Patch Space Abstractions 
can support this

RQ4: Patch Space Exploration

yannic.noller@nus.edu.sg 17ICSE‘2022 – Trust Enhancement Issues in Program Repair



Problem Overview Developer Survey Experiments Conclusion

RQ4: Patch Ranking
Program #Vul Angelix Prophet GenProg Fix2Fit

LibTIFF 7 1 0 0 1

Lighttpd 2 0 0 0 0

PHP 43 0 0 0 1

GMP 1 0 0 0 0

GZip 3 0 0 0 0

Python 4 0 0 0 0

Total 60 1 0 0 2

Correct Patches generated by APR for ManyBugs benchmark in 
1h timeout using the tool’s own fault localization (EC1).

an effective patch ranking 
is necessary for the developer

yannic.noller@nus.edu.sg 18ICSE‘2022 – Trust Enhancement Issues in Program Repair



Variation of test cases causes 
different effects.

(intelligent test selection needed)

better fix location ⇒ better repair
(techniques are limited by their search 
space construction and exploration)

Problem Overview Developer Survey Experiments Conclusion

RQ5: Impact of additional inputs

Impact of fix location Impact of available number 
of test cases

yannic.noller@nus.edu.sg 19ICSE‘2022 – Trust Enhancement Issues in Program Repair



❏ Developer Survey with > 100 software practitioners
❏ high-quality patches in a short time period (1-hour timeout, top-10 patches)
❏ low interaction with tool
❏ exchange of artifacts (e.g., test cases, patch explanations)

❏ Experimental Evaluation of state-of-the-art APR techniques
❏ developer‘s constraints are tough
❏ rich search space needed: can be supported by user inputs
❏ efficient search space exploration: can be supported by abstractions
❏ patch ranking should not be ignored

Problem Overview Developer Survey Experiments Conclusion

Conclusions

yannic.noller@nus.edu.sg 20ICSE‘2022 – Trust Enhancement Issues in Program Repair



Developers need support for efficient patch review:
(1) insights why the patch is targeting the right issue

e.g., root cause analysis, the results of our fault/fix localization, inferred repair constraints

(2) evidence on the correctness of the patch
e.g., additional test cases, test suite coverage information or input coverage information

(3) easy accessibility of the patches
e.g., better ranking and navigation of patch candidates in the programming environment

à APR side-products can support some of these steps (e.g., identified fault 
locations and inferred repair constraints).

à We definitely need more research on patch explanations, patch ranking, and
efficient traversal of an abstract patch space.

Problem Overview Developer Survey Experiments Conclusion

How to get closer to trust?

yannic.noller@nus.edu.sg 21ICSE‘2022 – Trust Enhancement Issues in Program Repair


