
HyDiff: Hybrid Differential
Software Analysis

1yannic.noller@hu-berlin.de International Conference on Software Engineering (ICSE) 2020

Yannic Noller Corina S. Pasareanu Marcel Böhme

Youcheng Sun Hoang Lam Nguyen Lars Grunske

https://doi.org/10.5281/zenodo.3627893

Differential Analysis

yannic.noller@hu-berlin.de 2International Conference on Software Engineering (ICSE) 2020

input1

program P

input2

program P

2

=?
behavior1

behavior2

x

y
input

program P

program P’

1

=?
behavior1

behavior2

x

Regression Analysis
Side-Channel Analysis

Robustness Analysis of
Neural Networks

Problem Solution SummaryEvaluation

yannic.noller@hu-berlin.de 3International Conference on Software Engineering (ICSE) 2020

Input
program
versions

seed input
files

change-annotated
program

Fuzzing Symbolic Execution

import

H
yD

iff

ICFGinstrumentation

assessment trie extension /
assessment

constraint solving /
input generation

exploration

mutate
inputs

import

fuzzer output 
queue

Output

symbc output 
queue

input +odiff +ddiff +crash +cdiff +patch-dist +cov
id:0001 X X X
id:0002 X X
id:0003 X X

… … … … … … …

set of divergence revealing test inputs

good in finding
shallow bugs, but bad
in finding deep program

paths

input reasoning ability,
but path explosion and

constraint solving

Problem Solution SummaryEvaluation

yannic.noller@hu-berlin.de 4International Conference on Software Engineering (ICSE) 2020

Input
program
versions

seed input
files

change-annotated
program

2.4 differential program analysis 21

Table 1: Change-Annotations by Shadow Symbolic Execution [141].

Change Type Example

Update assignment x = x + change(E1, E2);

Update condition if(change(E1, E2)) ...

Add extra assignment x = change(x, E);

Remove assignment x = change(E, x);

Add conditional if(change(false, C)) ...

Remove conditional if(change(C, false)) ...

Remove code if(change(true, false)) ...

Add code if(change(false, true)) ...

existing assignment: x = x + change(E1, E2); the variable x holds two expressions, x +

E2 for the new version and x + E1 for the old version.
SSE performs dynamic symbolic-execution on such a unified program version, which is

implemented in two phases: (1) the concolic phase, and (2) the bounded symbolic execution
(BSE) phase.

In the first phase, SSE simply follows the concrete execution of test inputs from an ex-
isting test suite, while it checks for divergences along the control-flow of the two versions.
This exploration is driven by the idea of four-way forking. In traditional symbolic execution
every branching condition introduces two forks to explore the true and false branches.
Shadow symbolic execution instead introduces four forks to investigate all four combina-
tions of true and false branches for both program versions. As long as there is no concrete
divergence, SSE follows the so-called sameTrue and sameFalse branch, which denotes that
both concrete executions take the same branches. Additionally, SSE checks the satisfiability
of the path constraints for the other two branching options, where both versions take dif-
ference branches. These branches are called diffTrue and diffFalse paths. For every feasible
diff path, SSE generates a concrete input and stores the divergence point for later explo-
ration by the second phase. As long there is no concrete divergence, SSE continues until
the end of the program.

When SSE hits the mentioned addition or a removal of straightline code blocks, it
immediately stores a divergence point. This conservative handling leads to an over-
approximation of the diff paths because the added / deleted code may not necessarily
lead to an actual divergence.

The second phase performs bounded symbolic execution (BSE), only on the new version,
from the stored divergence points to further investigate the divergences.

At the end, Palikareva et al. [141] perform some post-processing of the generated inputs
to determine whether they expose some observable differences, e.g., by comparing the
outputs and the exit codes. Palikareva et al. [141] implemented their approach on top of
the KLEE symbolic execution engine [33].

Limitations of Shadow Symbolic Execution. Shadow symbolic execution as introduced
by Palikareva et al. [141] is driven by concrete inputs from an existing test suite. While this
exploration strategy tries to focus on constraining the search space, it might miss important
divergences as it strongly depends on the quality of these initial test input. In particular SSE
might miss deeper divergences in the BSE phase because of limiting prefixes in the path
constraints. Since BSE is started from the identified divergence points, it inherits the path
constraint prefix from the concrete input that has been followed to find this divergence. In
general, when there are several paths from the beginning of the program to this divergence,

[March 29, 2020 at 11:53 – classicthesis version 0.1]

change-annotations by Palikareva et al. [2]

input := change(input1, input2)

HyDiff’s Input
seed inputs

program under test

two different change types

(1) inside the program code
(2) in the input

Problem Solution SummaryEvaluation

yannic.noller@hu-berlin.de 5International Conference on Software Engineering (ICSE) 2020

Fuzzing Symbolic Execution

import

H
yD

iff

ICFGinstrumentation

assessment trie extension /
assessment

constraint solving /
input generation

exploration

mutate
inputs

import

fuzzer output 
queue

symbc output 
queue

Differential Greybox Fuzzing (DF)
built upon AFL [1] (genetic algorithm)

mutant selection driven by differential heuristics:

‣ output difference

‣ decision history difference

‣ cost difference

‣ patch distance

additionally guided by branch coverage

Problem Solution SummaryEvaluation

yannic.noller@hu-berlin.de 6International Conference on Software Engineering (ICSE) 2020

Fuzzing Symbolic Execution

import

H
yD

iff

ICFGinstrumentation

assessment trie extension /
assessment

constraint solving /
input generation

exploration

mutate
inputs

import

fuzzer output 
queue

symbc output 
queue

Differential Symbolic Execution (DSE)
built upon Symbolic PathFinder (SPF) [3]

central data structure: trie

node selection driven by differential heuristics:

‣ decision history difference

‣ cost difference

‣ patch distance

additionally guided by branch coverage

Problem Solution SummaryEvaluation

yannic.noller@hu-berlin.de 7International Conference on Software Engineering (ICSE) 2020

Output input +odiff +ddiff +crash +cdiff +patch-dist +cov
id:0001 X X X
id:0002 X X
id:0003 X X

… … … … … … …

set of divergence revealing test inputs

HyDiff’s Output
set of generated inputs

classified by divergence

‣ output difference (+odiff)

‣ control-flow (+ddiff)

‣ crashing behavior (+crash)

‣ execution cost (+cdiff)

additionally

‣ patch distance (+patch-dist)

‣ branch coverage (+cov)

Problem Solution SummaryEvaluation

yannic.noller@hu-berlin.de 8International Conference on Software Engineering (ICSE) 2020

Experiments
Regression Analysis

Side-Channel Analysis

Robustness Analysis of
Neural Networks

HyDiff classifies all subjects correctly

significantly more output and decision differences

HyDiff shows good trade-off between DSE and DF

no significant amplification of the exploration

stress test for HyDiff

HyDiff significantly more output differences

Problem Solution SummaryEvaluation

9yannic.noller@hu-berlin.de

HyDiff: Hybrid Differential Software Analysis

yannicnoller/
hydiff

International Conference on Software Engineering (ICSE) 2020

Problem Solution SummaryEvaluation

https://github.com/yannicnoller/hydiff
https://github.com/yannicnoller/hydiff

References

10yannic.noller@hu-berlin.de

[1] Website. American Fuzzy Lop (AFL). http://lcamtuf.coredump.cx/afl/.

[2] Hristina Palikareva, Tomasz Kuchta, and Cristian Cadar. 2016. Shadow of a Doubt: Testing for
Divergences between Software Versions. In 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE). 1181–1192. https: //doi.org/10.1145/2884781.2884845

[3] Corina S. Păsăreanu, Willem Visser, David Bushnell, Jaco Geldenhuys, Peter Mehlitz, and
Neha Rungta. 2013. Symbolic PathFinder: integrating symbolic execution with model checking for
Java bytecode analysis. Automated Software Engineering 20, 3 (2013), 391–425. https://doi.org/
10.1007/s10515-013-0122-2

International Conference on Software Engineering (ICSE) 2020

http://lcamtuf.coredump.cx/afl/
https:%20//doi.org/10.1145/2884781.2884845
https://doi.org/10.1007/s10515-013-0122-2
https://doi.org/10.1007/s10515-013-0122-2

