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Table 1: Change-Annotations by Shadow Symbolic Execution [141].

Change Type Example

Update assignment x = x + change(E1, E2);

Update condition if(change(E1, E2)) ...

Add extra assignment x = change(x, E);

Remove assignment x = change(E, x);

Add conditional if(change(false, C)) ...

Remove conditional if(change(C, false)) ...

Remove code if(change(true, false)) ...

Add code if(change(false, true)) ...

existing assignment: x = x + change(E1, E2); the variable x holds two expressions, x +

E2 for the new version and x + E1 for the old version.
SSE performs dynamic symbolic-execution on such a unified program version, which is

implemented in two phases: (1) the concolic phase, and (2) the bounded symbolic execution
(BSE) phase.

In the first phase, SSE simply follows the concrete execution of test inputs from an ex-
isting test suite, while it checks for divergences along the control-flow of the two versions.
This exploration is driven by the idea of four-way forking. In traditional symbolic execution
every branching condition introduces two forks to explore the true and false branches.
Shadow symbolic execution instead introduces four forks to investigate all four combina-
tions of true and false branches for both program versions. As long as there is no concrete
divergence, SSE follows the so-called sameTrue and sameFalse branch, which denotes that
both concrete executions take the same branches. Additionally, SSE checks the satisfiability
of the path constraints for the other two branching options, where both versions take dif-
ference branches. These branches are called diffTrue and diffFalse paths. For every feasible
diff path, SSE generates a concrete input and stores the divergence point for later explo-
ration by the second phase. As long there is no concrete divergence, SSE continues until
the end of the program.

When SSE hits the mentioned addition or a removal of straightline code blocks, it
immediately stores a divergence point. This conservative handling leads to an over-
approximation of the diff paths because the added / deleted code may not necessarily
lead to an actual divergence.

The second phase performs bounded symbolic execution (BSE), only on the new version,
from the stored divergence points to further investigate the divergences.

At the end, Palikareva et al. [141] perform some post-processing of the generated inputs
to determine whether they expose some observable differences, e.g., by comparing the
outputs and the exit codes. Palikareva et al. [141] implemented their approach on top of
the KLEE symbolic execution engine [33].

Limitations of Shadow Symbolic Execution. Shadow symbolic execution as introduced
by Palikareva et al. [141] is driven by concrete inputs from an existing test suite. While this
exploration strategy tries to focus on constraining the search space, it might miss important
divergences as it strongly depends on the quality of these initial test input. In particular SSE
might miss deeper divergences in the BSE phase because of limiting prefixes in the path
constraints. Since BSE is started from the identified divergence points, it inherits the path
constraint prefix from the concrete input that has been followed to find this divergence. In
general, when there are several paths from the beginning of the program to this divergence,

[ March 29, 2020 at 11:53 – classicthesis version 0.1 ]

change-annotations by Palikareva et al. [2]

input := change(input1, input2)
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Differential Symbolic Execution (DSE)
built upon Symbolic PathFinder (SPF) [3]


central data structure: trie


node selection driven by differential heuristics: 

‣ decision history difference

‣ cost difference

‣ patch distance


additionally guided by branch coverage
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set of divergence revealing test inputs

HyDiff’s Output
set of generated inputs


classified by divergence

‣ output difference (+odiff)

‣ control-flow (+ddiff)

‣ crashing behavior (+crash)

‣ execution cost (+cdiff)


additionally

‣ patch distance (+patch-dist)

‣ branch coverage (+cov)
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HyDiff classifies all subjects correctly


significantly more output and decision differences

HyDiff shows good trade-off between DSE and DF


no significant amplification of the exploration

stress test for HyDiff


HyDiff significantly more output differences
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HyDiff: Hybrid Differential Software Analysis 

yannicnoller/
hydiff
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https://github.com/yannicnoller/hydiff
https://github.com/yannicnoller/hydiff
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