
HyDiff: Hybrid Differential Software Analysis
Yannic Noller

yannic.noller@acm.org
Humboldt-Universität zu Berlin

Germany

Corina S. Păsăreanu
corina.pasareanu@west.cmu.edu
Carnegie Mellon University Silicon
Valley, NASA Ames Research Center

USA

Marcel Böhme
marcel.boehme@acm.org

Monash University
Australia

Youcheng Sun
youcheng.sun@qub.ac.uk
Queen’s University Belfast

United Kingdom

Hoang Lam Nguyen
nguyenhx@informatik.hu-berlin.de
Humboldt-Universität zu Berlin

Germany

Lars Grunske
grunske@informatik.hu-berlin.de
Humboldt-Universität zu Berlin

Germany

ABSTRACT

Detecting regression bugs in software evolution, analyzing side-
channels in programs and evaluating robustness in deep neural
networks (DNNs) can all be seen as instances of differential soft-
ware analysis, where the goal is to generate diverging executions
of program paths. Two executions are said to be diverging if the
observable program behavior differs, e.g., in terms of program out-
put, execution time, or (DNN) classification. The key challenge of
differential software analysis is to simultaneously reason about
multiple program paths, often across program variants.

This paper presents HyDiff, the first hybrid approach for differ-
ential software analysis. HyDiff integrates and extends two very
successful testing techniques: Feedback-directed greybox fuzzing
for efficient program testing and shadow symbolic execution for
systematic program exploration. HyDiff extends greybox fuzzing
with divergence-driven feedback based on novel cost metrics that
also take into account the control flow graph of the program. Fur-
thermore HyDiff extends shadow symbolic execution by applying
four-way forking in a systematic exploration and still having the
ability to incorporate concrete inputs in the analysis. HyDiff ap-
plies divergence revealing heuristics based on resource consump-
tion and control-flow information to efficiently guide the symbolic
exploration, which allows its efficient usage beyond regression test-
ing applications. We introduce differential metrics such as output,
decision and cost difference, as well as patch distance, to assist the
fuzzing and symbolic execution components in maximizing the
execution divergence.

We implemented our approach on top of the fuzzer AFL and the
symbolic execution framework Symbolic PathFinder.We illustrate
HyDiff on regression and side-channel analysis for Java bytecode
programs, and further show how to use HyDiff for robustness
analysis of neural networks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380363

KEYWORDS

Differential Program Analysis, Symbolic Execution, Fuzzing

ACM Reference Format:

Yannic Noller, Corina S. Păsăreanu, Marcel Böhme, Youcheng Sun, Hoang
Lam Nguyen, and Lars Grunske. 2020. HyDiff: Hybrid Differential Software
Analysis. In 42nd International Conference on Software Engineering (ICSE
’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3377811.3380363

1 INTRODUCTION

The challenge of differential software analysis is to reason about
multiple program executions simultaneously. This may include
executions of different inputs on the same program or executions
of the same input across multiple programs or variants. In this paper,
we focus on the problem of generating inputs that trigger maximal
behavioral difference across program executions. We say that the
considered executions diverge if they lead to different observable
behavior. We consider various forms of divergence: in terms of
control-flow paths (decision difference), observed outputs (output
difference) and resource consumption (cost difference), which are
required for different target applications.

For instance, automated regression test generation aims to gen-
erate an input such that its execution on two successive versions
diverges [32, 33, 36, 37, 50] in terms of control-flow paths or ob-
served outputs. An input that witnesses an output difference may
expose a regression bug, i.e., an error that was introduced by the
modifications from one version to the next. Many existing regres-
sion test generation techniques focus only on the affected paths
in the changed version [6, 37, 46, 48, 50]. However, regression test-
ing inherently requires to reason about both program versions
simultaneously to mitigate the problem of false negatives.

Automated side-channel vulnerability detection aims to generate
two secret inputs such that (given the same public inputs) their ex-
ecution yields different resource consumption [3, 29]. A difference
in observable behavior, e.g., memory consumption or execution
time, indicates possible information leakage about the secret inputs.
For instance, if the time it takes to check a password of length n
turns out to be proportional to n, an attacker can derive the pass-
word length by observing the execution time. Such information
leaks represent serious vulnerabilities as demonstrated by the re-
cent Meltdown [25] and Spectre [21] vulnerabilities. Their detection
requires reasoning over multiple program executions.

https://doi.org/10.1145/3377811.3380363
https://doi.org/10.1145/3377811.3380363

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Yannic Noller, Corina S. Păsăreanu, Marcel Böhme, Youcheng Sun, Hoang Lam Nguyen, and Lars Grunske

Automated robustness analysis of deep neural networks (DNNs)
aims to generate two inputs that are only marginally different (to an
imperceptible degree), yet the DNN classifies them differently [13,
43]. Such adversarial perturbations are considered a major safety
and security concern. For instance, when a DNN classifier is used
in an autonomous car to identify street signs, a misclassification
undermines the safety of the passengers. Detecting such adversarial
behaviors requires reasoning over more than one execution at once.

In this work we present HyDiff, a hybrid technique that inte-
grates fuzzing, a fast but shallow testing technique, and symbolic
execution, a deep but slow analysis technique, for a differential soft-
ware analysis that can handle all of the above application scenarios.
For fuzzing, we build on the popular greybox fuzzerAmerican Fuzzy
Lop (AFL) [52] which we extend with a divergence-based feedback
channel and new search heuristics that aim to maximize the diver-
gence across multiple program executions. The role of the fuzzer
is to generate quickly many inputs, by mutating existing seed in-
puts, and favoring the ones that are shown to increase execution
divergence, according to different divergence metrics. This enables
HyDiff to swiftly discover many divergences, particularly in the
beginning of the campaign. However, fuzzing alone cannot reach
very deep into the code, grappling with complex branch conditions
and paths in low-probability domains. We therefore propose to
enhance the fuzzing with a symbolic execution component that
can tackle these issues by generating inputs via constraint solving
based on conditions collected from the code.

To this end we built HyDiff’s differential symbolic execution
(DSE) component by extending shadow symbolic execution (SSE)
[33], a differential analysis technique which represents two pro-
gram versions in one annotated program and uses four-way forking
to explore all four decisions resulting from the combined branch-
ing behavior of both versions. We extend SSE from [33] with an
incremental approach to allow it to periodically check and incor-
porate the newly available concrete inputs from the fuzzer. These
new concrete inputs are executed concolically (to collect symbolic
constraints along concrete paths) and they help to drive the sym-
bolic analysis in directions of particular interest, as directed by our
heuristics. In addition, HyDiff’s DSE component avoids the explo-
ration of uninteresting code areas (e.g., in case of regression testing
any unchanged program blocks), by pruning the search space, based
on an inter-procedural control flow graph (ICFG) analysis. As a
result, HyDiff’s DSE implements an efficient four-way forking
exploration strategy driven by concrete inputs, which allows it to
cut deeper into the program to reveal divergences.

The integration of these two differential analysis approaches
allows us to leverage their strengths and overcome their weak-
nesses. Both components are executed at the same time while they
exchange interesting inputs, enhancing each other. We note that hy-
brid approaches that combine fuzzing and symbolic execution have
been proposed in the past [8, 30, 41]. However HyDiff is the first
approach that explores the interplay between the two techniques
for a differential analysis. The problem is significantly harder than a
classical program analysis and hence existing hybrid solutions are
not applicable. Furthermore, while the majority of previous differ-
ential symbolic approaches [33, 37, 50] focus on regression testing,
HyDiff is a general approach that is more widely applicable; for
instance it can compute divergences that are related not only to

Fuzzing Symbolic Executioninstrumentation

import

mutate
inputs

assessment

fuzzer output
queue

program
versions

seed input
files

change-annotated
program

symbc output
queue

constraint solving /
input generation

trie extension /
assessment exploration

ICFG

set of divergence revealing test inputs

input +odiff +ddiff +crash +cdiff +patch-dist +cov

id:0001 X X X

id:0002 X X

id:0003 X X

...

import

Input

Output

H
yD
iff

Figure 1: HyDiff overview.

different execution paths but also to different costs associated with
the paths and that can be used in a side-channel analysis.

We implemented HyDiff for the analysis of Java bytecode on
top of the fuzzer AFL [52] and the symbolic execution framework
Symbolic PathFinder (SPF) [34]. We evaluate HyDiff for three
applications: (i) regression test generation, (ii) side-channel vul-
nerability detection, and (iii) robustness analysis of DNNs. For
(i) regression test generation, we evaluate HyDiff on the Traf-
fic Anti-Collision Avoidance System (TCAS) [51], several subjects
from the Defects4J benchmark [18], and regression errors in Apache
CLI [5]. For (ii) side-channel vulnerability detection, we evaluate
HyDiff on subjects taken from previous studies on side-channel
vulnerabilities [9, 29] as well as an implementation of modular ex-
ponentiation, an operation involving non-linear constraints and
typically used in cryptography [39]. For (iii) robustness analysis
of DNNs, we evaluate HyDiff on neural networks taken from the
MNIST dataset [24].

Our results show that HyDiff can identify divergences for all
examined applications. Furthermore, it identifies a divergence faster
and can reveal more differences than its individual components. In
summary, this work makes the following contributions:
• We present HyDiff, the first hybrid differential analysis ap-
proach that integrates greybox fuzzing and symbolic execution.
• We extend greybox fuzzing with a divergence-based feedback
channel and novel search heuristics.
• We extend shadow symbolic execution with incremental and
pruning techniques as well as novel heuristics that drive the
search towards finding structural- and cost-related divergences.
• We demonstrate HyDiff in multiple application scenarios, incl.
regression test generation, side-channel analysis, and the ro-
bustness analysis of neural networks in adversarial settings.

2 OVERVIEW

2.1 HyDiff’s Workflow

Figure 1 shows an overview of our approach. HyDiff takes sev-
eral programs and a set of seed files as input (top) and produces

HyDiff: Hybrid Differential Software Analysis ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

test inputs classified by the observed divergence (bottom). More
specifically, the inputs for HyDiff are as follows: (1) For differen-
tial fuzzing, HyDiff takes the considered program (versions), a
test driver and a target specification. (2) For differential symbolic
execution, it takes the change-annotated program, a test driver,
and a configuration. (3) For both, it takes seed input files as initial
seed corpus. The seed input files are used to perform an initial
exploration of the program(s). The test drivers parse the gener-
ated inputs and pass them as parameters to the program’s entry
point(s). The target specification includes a list of changed program
locations and is used to guide the fuzzer to these locations. The
change-annotated program includes annotations for the differential
symbolic execution. These annotations are adapted from [33] and
handle changed expressions, added/removed code lines, modified
functions etc. The configuration contains technical parameters such
as the used constraint solver.

The output of HyDiff is a set of generated inputs classified by
the observed divergence (see bottom of Figure 1). We distinguish
between differences in: output (+odiff), control-flow (+ddiff),
crashing behavior (+crash), and execution cost (+cdiff). Together,
these represent the differential metrics used to guide the search for
inputs in our analysis. Furthermore we aim to compute inputs that
decrease the distance to a divergence-inducing target (e.g., a patch;
+patch-dist) or increase branch coverage (+cov).

The middle layer in Figure 1 presents HyDiff’s high-level work-
flow. The left side shows HyDiff’s differential fuzzing component,
which makes use of the inter-procedural control-flow graph (ICFG)
constructed for the program. Marking divergence-inducing pro-
gram locations (e.g., changes in case of regression testing) in the
ICFG allows to compute distance metrics for guiding the explo-
ration in the fuzzer. The fuzzer output queue is initialized with
the seed input files. Our differential fuzzing uses a lightweight
instrumentation-guided genetic algorithm, similar to AFL [52]. The
instrumentation allows us to compute the patch distance and other
differential metrics for an input dynamically, during execution.
The fuzzer stores information about the observed inputs such as
minimum patch distance or output differences. The inputs that are
generated by the fuzzer are assessed by checking whether any differ-
ential metric gets improved by them. The goal is to keep only these
interesting inputs in the fuzzer queue, which improve at least one
of the metrics. These inputs are further modified using byte-level
mutations to generate new inputs that are executed and assessed
again by the fuzzer.

On the middle-right of Figure 1, we illustrate HyDiff’s differen-
tial symbolic execution (DSE) component. The central data structure
is a reduced symbolic execution tree, called trie, which encodes
succinctly the results of the differential symbolic execution. This
trie is updated incrementally as the analysis progresses. The nodes
in the trie represent the so far covered decision points together with
the observed concrete choices for these decisions. This symbolic
execution trie is initialized with the decision points and choices
observed along the concrete executions paths of the provided seed
inputs. The trie gets extended when new generated inputs or in-
puts imported from the fuzzer are executed. This step is called trie
extension and also includes an assessment, namely the gathering
of multiple differential metrics about each execution, e.g., patch
distance and cost difference, but also information about the branch

0 int calculate(int x, int y) {
1 int div;
2 switch (x) {
3 case 0:
4 div = y + 1;
5 break;
6 case 1:
7 div = y + 2;
8 break;
9 ...
10 case 250:
11 div = y + 251;
12 break;
13 default:
14 if (x == 123456) {
15 // CHANGE: expression y + 123455 to y + 123456
16 div = change(y + 123455 , y + 123456);
17 } else
18 div = x + 31;
19 }
20 int result = x / div;
21

22 // CHANGE: added conditional statement
23 if (change(false, result > 0))
24 result = result + 1;
25 return result;
26 }

Listing 1: Example program with annotated changes.

coverage. Each node in the trie gets ranked for its ability to show
new interesting behavior in terms of the differential analysis. An
exploration step then picks the most promising node and performs
a deeper exploration on alternative paths, starting with that node.
This step is performed with a purely (bounded) symbolic execution,
as opposed to a concolic execution. We thus use the trie to guide
the symbolic exploration towards interesting paths that have not
been explored before. The resulting, satisfiable path conditions are
solved and new inputs are generated. Each new input is assessed
again for its actual ability to reveal a divergence, since the nodes
get picked based on heuristics.

2.2 Illustrating Example

In order to demonstrate the challenges of differential analysis and
to illustrate the pertinent concepts of our approach, we introduce a
simple example for regression testing. Listing 1 shows a change-
annotated program, which represents two successive versions of
the calculate-program. The changes fix one error, but introduce
another—a typical regression bug. Specifically, in line 16 the devel-
oper changed the right-hand side expression from y + 123455 to
y + 123456, which fixed a division-by-zero error for y = −123455,
but introduced another crash for y = −123456. In line 23, the devel-
oper added a conditional statement result = result +1 if result > 0.
This changes the output for all positive results. However, it does
not directly fix or introduce any crashes.

HyDiff’s differential fuzzer component takes the patch as target
specification and computes distance values within the ICFG. During
fuzzing, these distance values will be used (as patch distance) to
guide the differential fuzzer towards the modifications. The fuzzer

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Yannic Noller, Corina S. Păsăreanu, Marcel Böhme, Youcheng Sun, Hoang Lam Nguyen, and Lars Grunske

0 int main(String[] args) {
1 /∗ Read input. ∗/
2 int x = readInput(args);
3 int y = readInput(args);
4 /∗ Execute old version. ∗/
5 Measurement.reset();
6 int res1 = calculate_old(x, y);
7 boolean[] dec1 = Measurement.getDecisions();
8 long cost1 = Measurement.getCost();
9 /∗ Execute new version. ∗/
10 Measurement.reset();
11 int res2 = calculate_new(x, y);
12 boolean[] dec2 = Measurement.getDecisions();
13 long cost2 = Measurement.getCost();
14 /∗ Report differences. ∗/
15 Result.setDecisionDiff(dec1, dec2);
16 Result.setOutputDiff(res1, res2);
17 Result.setCostDiff(cost1, cost2);
18 }

Listing 2: Simplified fuzzing driver for the example

component executes each generated input on both successive ver-
sions of the calculate-program compiled separately. HyDiff’s dif-
ferential symbolic execution (DSE) component takes both versions
as change-annotated (integrated) program as shown in Listing 1.
The DSE component uses these annotations to infer expressions
that indicate a difference between the old and the new version (cf.
the expression for div in line 16 and the boolean expression in line
23 in Listing 1). Like the fuzzing component, the DSE component
requires a small test driver to interface the change-annotated pro-
gram. The symbolic test driver reads the input, marks symbolic
values, and calls the change-annotated program. A simple symbolic
test driver for the calculate-program is shown in Listing 3. We
can see that the symbolic test driver facilitates both a concolic and
a symbolic mode. This is required to enable the exploration and
assessment phase (Figure 1.middle-right). During the exploration
phase, the inputs are marked as symbolic (lines 12-13) and the
change-annotated program is executed symbolically. During the
trie extension phase, the given concrete input is marked symbolic
(lines 5–9) and the change-annotated program is executed concol-
licaly, i.e., follows the concrete input. In this example, HyDiff’s
hybrid approach detects the regression bug more than nine times
faster thanHyDiff’s DSE component alone. The differential fuzzing
component alone times out after ten minutes without detecting the
regression. HyDiff uses the strengths of both techniques, so that it
can get into more paths by leveraging symbolic execution and is
very fast in finding its first output difference by leveraging fuzzing.

To illustrate the challenges of each individual approach, we
present some results first for running both HyDiff components
independently and then together on this example. The differential
fuzzing component finds its first output difference after 5.07 (+−0.99)
sec (where the +− value denotes the 95% confidence interval). In
total it finds 1.37 (+−0.17) output differences and 1.00 (+−0.00) decision
differences. The new crash is not found within the time bound of 10
min. Therefore, fuzzing is very fast in finding an output difference
(less than 6 seconds), but the narrow constraint at the end is difficult

0 int main(String[] args) {
1 int x, y;
2 /∗ Concolic or Symbolic Execution Mode ∗/
3 if (args.length == 1) {
4 /∗ Read input. ∗/
5 int valueX = readInput(args);
6 int valueY = readInput(args);
7 /∗ Add symbolic values. ∗/
8 x = addSymbolicValue(valueX, ''sym_x'');
9 y = addSymbolicValue(valueY, ''sym_y'');
10 } else {
11 /∗ Introduce symbolic values. ∗/
12 x = makeSymbolicValue(''sym_x'');
13 y = makeSymbolicValue(''sym_y'');
14 }
15 /∗ Execute change−annotated version. ∗/
16 calculate(x, y);
17 }

Listing 3: Simplified symbolic execution driver for the

example

to reach for fuzzing: x = 123456 ∧ y = −123456. Due to fuzzing’s
random mutations, it is simply unlikely to hit this exact condition.

In contrast, the differential symbolic execution component finds
its first output difference after 135.27 (+−0.66) sec. In total, it finds
35.17 (+−1.10) output differences and 2.00 (+−0.00) decision differences.
So it reveals much more output differences than fuzzing within the
given time bound. In fact, the DSE component can traverse all paths
in 5 minutes. In contrast to fuzzing it also finds the new crash, after
135.80 (+−0.64) sec. Nonetheless, symbolic execution needs relatively
long to find its first output difference. The switch statement with its
large amount of branches is difficult for symbolic execution, simply
because it takes its time to explore all of them, especially when the
interesting parts are at the end and symbolic execution traverses
it in a deterministic order. Note that the branches in the switch
cannot be pruned because there is a change after the switch, which
makes every path via the switch branches a potential interesting
path for exploration. In order to find an output difference earlier,
symbolic execution would need a hint to direct the exploration.

For the hybrid analysis with HyDiff, the differential fuzzing
and symbolic execution components are started with the same
seed input. Both run their analysis and exchange inputs that are
deemed interesting according to the divergence metrics after a pre-
specified time bound. The experimental results are as follows: first
output difference after 4.73 (+−0.78) sec, in total 35.13 (+−1.04) output
differences and 2.00 (+−0.00) decision differences. HyDiff finds the
new crash already after 14.43 (+−0.30) sec. The following sections
will explain each part and also the hybrid approach in more detail.

3 DIFFERENTIAL ANALYSIS

3.1 Differential Fuzzing

HyDiff’s differential fuzzing (DF) component is a heuristic-driven
greybox fuzzerwith a divergence-based feedback channel. By slightly
modifiying existing inputs in the seed corpus, new test inputs are
generated. Generated test inputs that increase coverage or diver-
gence (as measured by our differential metrics) are added to the seed

HyDiff: Hybrid Differential Software Analysis ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

corpus for further fuzzing. More specifically, the fuzzing process
works as follows: we use the provided program, the target specifica-
tion (for regression testing we define the locations of the program
changes), initial seed inputs, and the fuzzing driver as input. By
using some instrumentation we can measure various metrics during
the program execution, to drive the differential analysis. As the
first step, the fuzzer imports the initial seed files and starts with
mutating these inputs. By executing resulting mutated inputs with
the instrumented program, the fuzzer can assess the inputs based
on the collected metrics, and hence decide whether to keep any
of them and use them in further mutation steps. These interesting
inputs will be stored in the fuzzing queue. This process continues
in a loop until a defined time bound is reached or the user aborts
the execution.

Our core contribution in differential fuzzing is the input assess-
ment, i.e., the selection of the mutated inputs that will be used
for further mutations according to the divergence heuristics that
we introduce in this work (cf. the gray areas in the upper part of
Figure 1). Specifically we use the following differential metrics: the
output difference, the decision history difference, the cost difference,
and the patch distance.

The output difference has a binary value and is determined by
comparing the results (depending on their type) in the fuzzing
driver. Output differences also cover observed crashes, as long as
the two program versions behave differently. Observing an output
difference is a clear sign for a divergence revealing input. We en-
code the output difference and store it to remember it in further
comparisons to avoid duplicates.

The decision history encodes a sequence of boolean values to
represent each branching decision. The difference between two
decision histories is used as binary value, determined by compar-
ing each boolean value pair. If a different value pair is found, then
it means that different decisions were made during program ex-
ecution. Such a difference does not necessarily mean a semantic
divergence, e.g., it could also just represent some refactoring, but
it is an indication. Similar to the output difference, we encode and
store this difference. We call this metric also just decision difference.

The execution cost represents the resource consumption during
program execution: this can be time, which we approximate by
counting the executed instructions or some other user-specified cost.
Observing a cost difference is an indicator for a semantic divergence.

The shortest distance to the predefined targets is calculated by
leveraging the information from an ICFG of the analyzed program,
which is generated in advance and stored within the instrumenta-
tion. Such a target distance (in regression testing also called patch
distance [28]) is calculated for the new version only because we
are interested in reaching the changes in the new program ver-
sion. Hitting the changed areas is necessary to find a difference
in behavior, but it does not provide any guarantee for a semantic
difference. The idea is to keep inputs during the mutation process,
which may not improve any other differential metric, but come
closer to the patched code regions. In case of multiple targets, we
calculate distance values for all of them, and keep an input as soon
as its distance value for one of the targets improves.

In summary, our input assessment keeps an input as soon as
one of these metrics reveals a new behavior. In order to do so, the
fuzzer stores which differences (with which values) were already

observed. Additionally, the fuzzer also keeps inputs that increase
the branch coverage in general, to be able to make progress even if
no difference is currently detected. All metric values, besides the
output differences, are measured via the program instrumentation.

3.2 Differential Symbolic Execution

HyDiff’s differential symbolic execution (DSE) component runs
in two modes: concolically, which can incorporate inputs from the
fuzzer, but also purely symbolically, being able to make progress
on its own, even if no inputs from the fuzzer are present. This has
the benefit that DSE can operate when for example fuzzing cannot
generate interesting inputs because it is stuck at some point, but can
also benefit from concrete inputs to guide its own execution. The
workflow of the DSE component is similar to the one in Badger
[30], which however is not differential. It consists of three main
phases: (i) trie extension, (ii) exploration, and (iii) input generation
(cf. the middle-right of Figure 1). These steps are performed in a
loop until the search space was explored exhaustively or the user
aborts the analysis.

In the beginning the trie gets extended / initialized with the
decision points and concrete choices, which occur along the paths
of the seed inputs. Therefore, the inputs are being executed with
dynamic symbolic execution, which uses the notion of the four-
way forking strategy to enable the focused search for divergences,
similar to [33]. As illustrated in Listing 1, HyDiff’s DSE expects
change-annotations in the program or in the driver. These change-
annotations specify divergence-inducing statements in the pro-
gram (e.g., modifications for regression testing). As a novel ap-
plication, we also use them to infer changes in the program in-
put (e.g., for the side-channel analysis see Section 4.3). Every ex-
ecuted annotation introduces a so-called differential expression,
which consists of four parts: the old symbolic value, the old con-
crete value, the new symbolic value, and the new concrete value.
For example in Line 16 in Listing 1, assume the concrete value
for y is -123456 while the symbolic value of y is denoted by β .
The statement div=change(y+123455,y+123456) introduces the
following differential expression {oldsym= β + 123455, oldcon= -1,
newsym= β + 123456, newcon= 0}.

The differential expressions are the key to handling two program
executions at once; furthermore, our exploration strategy is driven
by these differential expressions to find paths where the control-
flow diverges across executions. Such paths are called: diff paths.
As soon as the DSE hits such a diff path (i.e. the execution exer-
cises a control-flow divergence), it switches to the execution of
the new version only. Therefore, the subsequent path explorations
will only use the second parameter of the change-annotations. This
also means that subsequent control-flow divergences will not be de-
tected because they are covered by the already identified divergence.
Nevertheless, deeper control-flow divergences might be reachable
by paths, which do not trigger the prior control-flow divergence.

During the extension of the trie, its nodes get assessed and ranked
according to their ability to reveal divergences. The exploration
step picks the most promising trie node for further exploration.
Therefore, we calculate for each node the following differential
metrics: the cost difference, and the patch distance. Additionally, we
determine whether the node is on a diff path, and whether the path

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Yannic Noller, Corina S. Păsăreanu, Marcel Böhme, Youcheng Sun, Hoang Lam Nguyen, and Lars Grunske

condition at this node contains a diff expression. The information
about the diff expression in a path condition is a good indication
for a potential future divergence because divergences will be only
possible if there is a diff expression present. Therefore, we also use
this information to rank the nodes.

Mirroring the differential fuzzing, we also compute the execu-
tion cost which is calculated by counting the number of executed
bytecode statements or it is user provided. However, in DSE we use
the symbolic execution framework, which interprets every byte-
code instruction, to count every statement when visited, instead of
instrumenting the bytecode. In contrast to differential fuzzing, the
DSE component cannot use the output difference as a search metric,
since the execution of diff paths is limited to the new version, and
hence, the full information about the output is not always available.
However, the intrinsic goal of DSE is to push the exploration to
diff paths, i.e., to identify decision differences. For DSE the patch
distance is computed as the distance to the change() statements
in the program. Based on the ICFG these distances and also the
reachability information are pre-calculated and stored in memory.
Additionally, these information are also used in DSE to prune all
paths that cannot reach any change() statement.

After selecting the currently most promising node, DSE will per-
form a trie-guided symbolic execution from the beginning of the
program to the selected trie node. Trie-guided means that it uses the
choices stored in the trie to select the branch at a conditional state-
ment, which makes it very efficient because no constraint solving
is invoked. After reaching the selected node, DSE starts a bounded
symbolic execution to gather new path conditions and generate
new inputs (cf. step (iii) input generation in Figure 1). All the inputs
generated by HyDiff’s DSE component are concretely executed
again. The reason is that the models used by symbolic execution
as well as the change annotations may not be precise enough to
ensure that every diff path discovered during symbolic execution
also triggers a diff path in the real program execution. Therefore,
we replay the inputs, which were generated with symbolic execu-
tion, with our fuzzing driver and reassess them for the induced
difference, in order to report the correct results.

In our experiments we use the following heuristics to rank the
nodes for exploration: (1) Prioritize nodes that contain a differential
expression, but are not yet on a diff path. (2) Prioritize a node with-
out differential expression before a node which is already on a diff
path. (Note: here we only have nodes that can reach the changes).
(3) Prioritize new branch coverage. (4) If two nodes have not yet
touched any change, then prioritize the node with smaller distance.
(5) Prioritize nodes that already have higher cost differences be-
tween the two versions. (6) Prioritize higher trie nodes.

The highest priority is to find decision differences, i.e., divergence
of control-flow. Therefore, HyDiff’s DSE component favors such
potential nodes (points 1 and 2). It is the most valuable divergence
metric, also because output difference cannot be encoded. It can be
simply detected by checking whether we are currently in a diff path.
The next priority is to support the fuzzer during exploration, for
which it is necessary to solve constraints corresponding to condi-
tions that are difficult for the fuzzer (point 3). As further indications
for a difference we use the information about the patch distance
and the cost difference (point 4 and 5). As last search parameter we
favor higher nodes in the trie, which leads to a broader exploration

of the search space, which also supports fuzzing. These heuristics
represent the default configuration setup for our differential analy-
sis and that they can be easily modified. Why do we not just pick
nodes on a diff path with highest priority? When a node is on a diff
path, then the analysis has already identified an input to trigger
the divergences that causes the diff path. All unexplored branches
at this node will be on a diff path as well, all of them caused by
the same divergence. Therefore, our strategy focuses first on other
nodes, which are not yet on a diff path, but show the potential to
reach one and potentially trigger a different divergence.

3.3 Hybrid Analysis

HyDiff implements a hybrid approach, which combines the above
described differential fuzzing and the differential symbolic execu-
tion components. The components communicate with each other
to exchange interesting inputs discovered with either technique.
Both components get started with the same seed input(s). After a
pre-defined time property, each part checks the other output queue
for interesting inputs. Therefore, differential fuzzing has to execute
the inputs from differential symbolic execution to see whether they
improve any of the differential metrics. Differential symbolic exe-
cution has to replay the inputs from differential fuzzing to extend
the trie, check whether the path was already explored, and whether
a new code area was hit, which could introduce differential expres-
sions and update the ranking of the trie nodes. The default setup for
HyDiff is to start both components at the same time, however, this
can be changed via its configuration. For example one component
can be started later than the other and use the already generated
inputs by the other component as additional seed inputs.

3.4 Implementation Details

We implemented our approach for the differential analysis of Java
bytecode. The fuzzing part is built on top of AFL, similar to Ke-
linci [19], where AFL is used as the underlying fuzzing engine. A
Java wrapper is used to relay the program execution triggered by
AFL to the actual Java program. We instrument the Java bytecode
with the ASM bytecode manipulation framework [16] to measure
the differential metrics. The ICFG is constructed by using Apache
Commons BCEL [11]. The symbolic execution part is build on top
of Symbolic PathFinder (SPF), a symbolic execution tool for Java
bytecode [34], and its extension for shadow symbolic execution
[31]. For the four-way forking we had to modify each bytecode in-
struction interpretation to be able to handle differential expressions
and fork the execution accordingly.

4 APPLICATIONS AND EVALUATION

In this section we describe three applications of our HyDiff ap-
proach: regression testing, side-channel analysis and differential
analysis of neural networks. The broad scope of these case studies
illustrates the generality of our hybrid differential analysis. Hy-
Diff is not limited to one type of behavioral difference, such as
output differences for regression testing. It also allows to detect
other types of differences, such as in execution cost differences
for side-channel vulnerability discovery. The elegant way of repre-
senting changes not only in the programs (as in regression testing)
but also in the input facilitates the differential analysis even of

HyDiff: Hybrid Differential Software Analysis ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 1: Results for Regression Testing (t=600sec=10min, average over 30 runs). The bold values represent significant differ-

ences to the closest other subject verified with the Wilcoxon ranked sum test (α = 0.05).
Subject Differential Fuzzing (DF) Differential Symbolic Execution (DSE) HyDiff

(# changes) t +odiff tmin #odif f #ddif f t +odiff tmin #odif f #ddif f t +odiff tmin #odif f #ddif f
TCAS-1 (1) - - 0.00 (+−0.00) 0.00 (+−0.00) 22.47 (+−0.39) 21 1.00 (+−0.00) 3.00 (+−0.00) 49.87 (+−5.48) 29 1.00 (+−0.00) 4.67 (+−0.40)

TCAS-2 (1) 441.83 (+−57.70) 120 0.70 (+−0.23) 2.13 (+−0.73) 182.37 (+−1.96) 177 1.00 (+−0.00) 9.00 (+−0.00) 186.87 (+−12.30) 92 1.23 (+−0.18) 13.83 (+−0.37)

TCAS-3 (1) 588.43 (+−15.18) 392 0.10 (+−0.11) 38.63 (+−1.96) 239.07 (+−2.57) 232 2.00 (+−0.00) 19.00 (+−0.00) 263.20 (+−3.61) 236 2.00 (+−0.00) 57.43 (+−1.54)

TCAS-4 (1) 28.47 (+−10.42) 2 1.00 (+−0.00) 18.27 (+−1.06) - - 0.00 (+−0.00) 3.00 (+−0.00) 43.70 (+−14.01) 3 1.00 (+−0.00) 22.53 (+−1.01)

TCAS-5 (1) 184.93 (+−46.66) 24 2.00 (+−0.00) 31.97 (+−1.06) 185.40 (+−1.95) 180 2.00 (+−0.00) 24.00 (+−0.00) 94.60 (+−30.72) 1 2.00 (+−0.00) 49.83 (+−1.27)

TCAS-6 (1) 233.63 (+−54.48) 4 0.97 (+−0.06) 4.13 (+−0.83) 5.30 (+−0.23) 4 1.00 (+−0.00) 6.00 (+−0.00) 7.57 (+−0.26) 6 1.00 (+−0.00) 10.37 (+−0.70)

TCAS-7 (1) - - 0.00 (+−0.00) 0.00 (+−0.00) 56.97 (+−0.76) 54 2.00 (+−0.00) 6.00 (+−0.00) 71.70 (+−1.71) 62 2.00 (+−0.00) 8.93 (+−0.39)

TCAS-8 (1) - - 0.00 (+−0.00) 0.00 (+−0.00) 51.70 (+−0.16) 51 2.00 (+−0.00) 6.00 (+−0.00) 65.33 (+−0.75) 61 2.00 (+−0.00) 8.77 (+−0.49)

TCAS-9 (1) 221.73 (+−48.83) 10 1.00 (+−0.00) 6.13 (+−0.85) 184.20 (+−0.57) 181 1.00 (+−0.00) 15.00 (+−0.00) 185.53 (+−18.42) 39 1.00 (+−0.00) 22.37 (+−0.89)

TCAS-10 (2) 173.47 (+−46.27) 1 1.93 (+−0.09) 12.27 (+−1.69) 5.23 (+−0.15) 5 2.00 (+−0.00) 12.00 (+−0.00) 7.63 (+−0.22) 7 2.00 (+−0.00) 21.30 (+−0.82)

Math-10 (1) 221.13 (+−56.26) 10 64.50 (+−15.98) 15.50 (+−2.35) 2.87 (+−0.15) 2 7.00 (+−0.00) 10.00 (+−0.00) 3.87 (+−0.20) 3 44.33 (+−5.47) 32.00 (+−1.39)

Math-46 (1) 377.87 (+−63.43) 77 0.80 (+−0.14) 36.33 (+−1.07) 117.80 (+−0.55) 113 1.00 (+−0.00) 5.80 (+−0.14) 122.00 (+−8.34) 49 1.00 (+−0.00) 38.17 (+−0.82)
Math-60 (7) 6.93 (+−0.63) 4 219.17 (+−5.26) 92.90 (+−1.64) 3.60 (+−0.18) 3 2.00 (+−0.00) 3.00 (+−0.00) 4.77 (+−0.15) 4 234.23 (+−5.63) 94.20 (+−2.67)
Time-1 (14) 5.17 (+−1.20) 2 123.30 (+−5.86) 170.63 (+−3.43) 5.33 (+−0.17) 5 33.00 (+−0.00) 32.00 (+−0.00) 3.80 (+−0.69) 1 189.73 (+−11.94) 225.33 (+−5.62)

CLI1-2 (13) - - 0.00 (+−0.00) 159.53 (+−4.05) - - 0.00 (+−0.00) 4.00 (+−0.00) - - 0.00 (+−0.00) 169.40 (+−4.07)

CLI2-3 (13) 10.83 (+−3.33) 2 82.30 (+−3.98) 176.83 (+−3.62) - - 0.00 (+−0.00) 35.00 (+−0.00) 13.27 (+−3.62) 2 84.63 (+−4.24) 242.70 (+−3.80)

CLI3-4 (8) 7.43 (+−1.60) 1 96.73 (+−4.54) 279.13 (+−4.51) - - 0.00 (+−0.00) 7.00 (+−0.00) 8.93 (+−2.13) 2 113.33 (+−4.80) 471.50 (+−8.93)

CLI4-5 (13) 589.57 (+−16.05) 358 0.07 (+−0.09) 219.30 (+−3.74) - - 0.00 (+−0.00) 2.00 (+−0.00) 551.97 (+−45.65) 125 0.13 (+−0.12) 235.17 (+−5.73)

CLI5-6 (21) 4.13 (+−1.04) 1 143.87 (+−4.99) 182.00 (+−5.54) - - 0.00 (+−0.00) 5.00 (+−0.00) 6.17 (+−1.31) 2 177.80 (+−4.39) 214.47 (+−6.38)

non-traditional software, such as the robustness analysis of neu-
ral networks. For all three applications we conducted experiments
for differential fuzzing, differential symbolic execution, and their
combination. Our implementation’s source code as well as all evalu-
ation artifacts (incl. the subjects and all drivers) are published here:
https://doi.org/10.5281/zenodo.3627893 [44].

4.1 Experiment Infrastructure

For our experiments we used a virtual machine with Ubuntu 18.04.1
LTS featuring 2x Intel(R) Xeon(R) CPU X5365 @ 3.00GHz with 8GB
of memory, OpenJDK 1.8.0_191 and GCC 7.3.0. Due to the random-
ness in fuzzing, we repeated each experiment 30 times and reported
the averaged results together with the 95% confidence intervals and
the max/min values. Although symbolic execution is a deterministic
process, we observed small variations between experiments, mostly
in the time until the first observed difference. The variations can be
caused by the constraint solver and other activities on the machine.
Therefore, we decided to average the results for it as well over 30
repetitions. The experiments for regression testing use a timeout
of 10 min (=600 sec), the experiments for side-channel analysis
a timeout of 30 min (=1800 sec) to match the experiments from
DifFuzz [29], and the experiments with the DNN are executed for
1 hour (=3600 sec) because of the long running program executions.
As seed input we used a randomly generated file, but we ensured
that this initial input does not crash the application, which is a
precondition for AFL. The highlighted values in the Tables 1, 2
and 3 represent significant differences to the closest other subject
verified with the Wilcoxon Test (with 5% significance level).

4.2 Regression Testing

In regression testing we havemultiple versions of the same program
and search for regression bugs, i.e., changes in the program that
lead to semantic failures. Our motivational example in Section 2.2
already shows how the fuzzing and symbolic execution driverwould
look like. The fuzzing driver executes both versions with the same
input and measures the differences (i.e., decision differences, output
differences, cost differences and target distances). The symbolic

execution driver executes only a single program version, which
contains change annotations. In the case of regression testing, our
approach aims to find all divergence-revealing inputs. Whether an
input represents a regression or only a progression, i.e., whether
an observable change in the output is intended or a bug, is out of
scope for this work.

4.2.1 Subjects. For the evaluation we searched for Java applica-
tions with multiple available versions. We started with the Traffic
collision avoidance system (TCAS) originally taken from the SIR
repository [40], which was used before in other regression testing
work related to SPF [51]. It has 143 LOC and contains injected mu-
tations as changes, in our case 1-2 changes per version. We used
the first ten versions of TCAS for a preliminary assessment of our
approach. We further analyzed real-world applications from the
Defects4J benchmark [18], which contains a large set of Java bugs,
but not necessarily regression bugs, and hence, requires some man-
ual investigation. We searched for regression bugs in the projects
Math (85 KLOC) and Time (28 KLOC) and identified four subjects:
Math-10, Math-46, Math-60 and Time-1. They contain between 1
and 14 changes per version, where one change means a difference
between the program versions that can be represented by one
change-annotation, and hence, also can span multiple lines. Addi-
tionally, we investigated five versions from Apache CLI [12] (4966
LOC), which was also used before in other regression testing work
[5] and contains between 8 and 21 changes per version.

4.2.2 Results. We collected four metrics: t +odiff denotes the av-
erage time (sec) until the first output difference (incl. a crash in
the new version) has been observed, tmin denotes the minimum
time over all runs for an output difference, #odi f f denotes the
average number of found output differences, and #ddi f f denotes
the average number of found decision differences.

As shown in Table 1, HyDiff is able to classify the subjects
correctly in the given timeout of 10 minutes: for all regression
subjects, except for the CLI1-2, HyDiff identifies at least one input
that triggers an output difference (+odiff). For CLI1-2 there is no

https://doi.org/10.5281/zenodo.3627893

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Yannic Noller, Corina S. Păsăreanu, Marcel Böhme, Youcheng Sun, Hoang Lam Nguyen, and Lars Grunske

Table 2: Results for Side-Channel Analysis (t=1800sec=30min, average over 30 runs). The bold values represent significant

differences to the closest other subject verified with the Wilcoxon ranked sum test (α = 0.05).
Benchmark Differential Fuzzing (DF) Differential Symbolic Execution (DSE) HyDiff

Subject Version δ δmax t : δ > 0 δ δmax t : δ > 0 δ δmax t : δ > 0
Blazer_login Safe 0.00 (+−0.00) 0 - 0.00 (+−0.00) 0 - 0.00 (+−0.00) 0 -
Blazer_login Unsafe 132.87 (+−14.87) 238 5.07 (+−1.18) 254.00 (+−0.00) 254 34.20 (+−0.19) 254.00 (+−0.00) 254 3.47 (+−0.74)

Themis_Jetty Safe 11.77 (+−0.60) 15 3.77 (+−0.72) 21.00 (+−0.00) 21 57.70 (+−1.03) 13.80 (+−1.02) 23 4.20 (+−0.96)
Themis_Jetty Unsafe 70.87 (+−6.12) 105 6.83 (+−1.62) 98.00 (+−0.00) 98 58.50 (+−0.51) 100.53 (+−1.37) 111 5.90 (+−1.12)
STAC_ibasys Unsafe 129.40 (+−19.52) 280 41.60 (+−3.17) 280.00 (+−0.00) 280 70.30 (+−3.36) 280.00 (+−0.00) 280 45.63 (+−3.11)
RSA 1717 107.27 (+−1.22) 112 2.20 (+−0.23) 108.00 (+−0.60) 112 3.47 (+−0.18) 108.17 (+−1.10) 116 2.33 (+−0.38)
RSA 834443 186.77 (+−1.75) 196 1.87 (+−0.18) 183.63 (+−0.89) 190 3.57 (+−0.18) 184.50 (+−1.24) 191 1.73 (+−0.23)
RSA 1964903306 272.77 (+−2.47) 286 1.90 (+−0.28) 252.00 (+−0.00) 252 3.30 (+−0.16) 275.93 (+−3.17) 307 1.93 (+−0.26)
RSA (30s) 1717 85.00 (+−6.14) 104 2.20 (+−0.23) 102.00 (+−0.00) 102 3.47 (+−0.18) 97.80 (+−0.74) 104 2.33 (+−0.38)
RSA (30s) 834443 152.93 (+−6.58) 187 1.87 (+−0.18) 173.23 (+−1.04) 183 3.57 (+−0.18) 172.80 (+−0.80) 181 1.73 (+−0.23)
RSA (30s) 1964903306 226.67 (+−7.94) 262 1.90 (+−0.28) 252.00 (+−0.00) 252 3.30 (+−0.16) 254.27 (+−1.75) 269 1.93 (+−0.26)

output difference expected [5]. DF and DSE in contrast, cannot
classify all subjects correctly.

In terms of time to find the first output difference, DF is not
significantly faster than HyDiff, except for the subject CLI5-6, al-
though it does only mean 2 seconds performance benefit in absolute
values. In fact in most cases HyDiff is faster than DF.

In comparison to DSE, HyDiff is most of the times comparable,
but DSE is also significantly faster for some subjects (e.g., TCAS-1
or TCAS-7). In such cases the differential symbolic execution part of
HyDiff is kept busy with importing inputs from the fuzzer, which
holds off its own analysis progress. This is a problem, which could
be tackled with a more fine-tuned configuration of HyDiff. Note
that for most of the cases the absolute difference between HyDiff
and DSE is just a couple of seconds.

In terms of actually finding indicators for a regression, namely
output and decision differences, HyDiff shows its benefits. For the
most of the subjects HyDiff finds a comparable or larger number
of output differences (+odiff) than the single parts. For example for
Time-1 andCLI5-6HyDiff can identify waymore output differences.
In addition, for all cases, except Math-46 and Math-60, HyDiff can
identify significantly more decision differences (+ddiff). In general,
the inputs imported by symbolic execution are useful to push the
exploration, but in this special case symbolic execution does not
perform very good in terms of the number of generated paths.

Summarized, our results show that HyDiff clearly outperforms
the single techniques in terms of identifying regressions, whereas
at the same time, HyDiff only loses some seconds in contrast to
DSE to identify the first output difference.

4.3 Side-Channel Analysis

Side-channels are dangerous because they allow an adversary to
uncover secret program data from observations made over the non-
functional behavior of a program with respect to a resource con-
sumption, such as execution time, consumed memory or response
size. Traditional techniques for detecting side-channels involve the
analysis of two program copies via self-composition [3] in an at-
tempt to find two secret-dependent paths that lead to a noticeable
difference in resource consumption. If no such difference is found,
this corresponds to the classic notion of non-interference meaning
no vulnerability was found. If, on the other hand, a difference is
found, this corresponds to a vulnerability that needs to be fixed.
To perform side-channel analysis with HyDiff, we need to fuzz
three values: one public value, and two secret values (the approach

naturally extends to tuples of values). The fuzzing driver calls the
program twice, each with the same public value, but with another
secret value. We measure the cost difference between both execu-
tions, but also the decision difference and the output difference.
We use all metrics to drive the fuzzing process, but at the end the
most interesting is the cost difference, which is a measure for the
severity the side-channel vulnerability.

For the symbolic execution part we leverage the change-an-
notations to model the change in the secret part of the input:
secret = chanдe (secret1, secret2). This assignment directly occurs
in the driver, and hence, the program itself does not contain any
change annotations. Therefore, the patch distance is not relevant
in this setting. The differential expression gets introduced straight
in the beginning, so we do not use any control flow information
to prune any node (every node in the trie has already touched
the change). This also means that we can use a simpler symbolic
exploration strategy for side-channel analysis. In our case we devel-
oped the following strategy: (1) Prioritize new branch coverage. (2)
Prioritize higher cost difference. (3) Prioritize higher nodes in the
trie. The primary goal of symbolic execution in the hybrid analysis
framework is the support of the fuzzing component by solving com-
plex branching conditions, which are infeasible for fuzzing. Hence,
we prioritize the increase in branch coverage during symbolic ex-
ploration (point 1). The second goal is to find inputs that increase
the cost difference, since they signal side-channel vulnerabilities
(point 2). Finally, we prefer nodes higher in the trie (closer to the
root node) because this likely leads to a broader exploration of the
search space (point 3). Note that it is easy to change the strategies
so that different analysis types can be incorporated. In case of the
presented strategy for the side-channel analysis, we also experi-
mented with different orders in the prioritization, but we did not
notice an improvement. Side-channel analysis is concerned with
finding differences with regard to non-functional characteristics of
the program, which are affected by the input size. In order to be
able to handle multiple input sizes, we allow to define a maximum
input size, e.g., the maximum length of an input array. The fuzzing
driver will read up to the maximum number of values from the
input file. For the symbolic execution, the driver will introduce a
decision straight in the beginning (before actually calling the appli-
cation), which determines the input size. This decision will reflect
a node straight after the root node in the trie. We note that such
an extension of the driver’s functionality would be necessary also
when incorporating multiple input sizes in the regression analysis.

HyDiff: Hybrid Differential Software Analysis ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 3: Results for DNN Analysis (t=3600sec=60min, average over 30 runs). The bold values represent significant differences

to the closest other subject verified with the Wilcoxon ranked sum test (α = 0.05).
% Differential Fuzzing (DF) Differential Symbolic Execution (DSE) HyDiff (SymExe first 10min)

t +odiff tmin #odif f #ddif f t +odiff tmin #odif f #ddif f t +odiff tmin #odif f #ddif f
1 2725.40 (+−341.09) 1074 0.57 (+−0.20) 7.73 (+−0.18) 298.07 (+−1.26) 291 1.00 (+−0.00) 1.00 (+−0.00) 297.10 (+−2.38) 267 1.20 (+−0.14) 6.10 (+−0.11)
2 2581.47 (+−326.21) 1032 0.93 (+−0.28) 7.93 (+−0.13) 296.33 (+−1.16) 291 1.00 (+−0.00) 1.00 (+−0.00) 297.93 (+−1.29) 292 1.53 (+−0.20) 6.93 (+−0.13)
5 2402.97 (+−329.59) 1189 1.23 (+−0.37) 6.47 (+−0.18) 308.83 (+−2.66) 301 1.00 (+−0.00) 1.00 (+−0.00) 301.83 (+−1.16) 296 2.03 (+−0.29) 6.90 (+−0.17)

10 2155.40 (+−343.76) 996 1.57 (+−0.34) 8.10 (+−0.17) 327.13 (+−4.36) 306 1.00 (+−0.00) 1.00 (+−0.00) 311.07 (+−1.01) 306 2.37 (+−0.31) 7.00 (+−0.13)
20 1695.83 (+−228.18) 953 2.70 (+−0.37) 9.13 (+−0.12) 344.47 (+−1.62) 337 1.00 (+−0.00) 1.00 (+−0.00) 341.83 (+−1.27) 336 3.13 (+−0.34) 7.20 (+−0.14)
50 1830.83 (+−259.79) 1220 2.43 (+−0.42) 6.33 (+−0.21) 449.33 (+−1.25) 442 1.00 (+−0.00) 1.00 (+−0.00) 452.63 (+−2.06) 434 3.77 (+−0.34) 7.27 (+−0.16)

100 1479.17 (+−231.25) 960 2.47 (+−0.37) 9.37 (+−0.20) 581.77 (+−2.51) 570 1.00 (+−0.00) 1.00 (+−0.00) 575.13 (+−2.65) 564 3.10 (+−0.35) 7.60 (+−0.18)

Yet, our regression subjects only considered simple input types, for
which the input size was not relevant.

4.3.1 Subjects. For the evaluation we selected subjects from [29],
previously analyzed in [1, 9], which represent state-of-the art in
side-channel analysis: Blazer_login (25 LOC) and Themis_Jetty (17
LOC), and a sophisticated authentication procedure STAC_ibasys
(707 LOC) from [29] which handles complex image manipulations.
They come in unsafe and safe variants, where the safe variant
usually means that it does not leak any information. The subject
Themis_Jetty Safe is known to still leak information (but the dif-
ference in cost is small). Additionally we analyzed an implementa-
tion of modular exponentiation, RSA_modpow (30 LOC), from [39]
which has a timing side channel that is due to an optimized step in
the exponentiation procedure. In [22] it was shown how a similar
vulnerability was exploited to break RSA encryption/decryption.
In our experiments we used three different values for modulo.

4.3.2 Results. We collected three metrics: δ denotes the average
cost difference (= δ) until timeout, δmax denotes the maximum δ
over all runs and t : δ > 0 denotes the average time (sec) until the
first δ greater than zero has been observed.

As shown in Table 2, HyDiff can detect all side-channels, i.e., it
finds cost differences (δ) greater than zero for all unsafe examples.
DSE alone needs quite a long time to actually find its first δ > 0,
but then it performs well in maximizing it. DF quickly discovers
an input with δ > 0, but needs longer to actually find a large value
for δ . HyDiff represents the perfect combination of both single
techniques: the speed of fuzzing and the reasoning strength of sym-
bolic execution. HyDiff finds very large values for δ comparable
to DSE, and finds its first δ > 0 in a comparable time as DF. Both
are important factors for the identification and the assessment of
side-channel vulnerabilities.

The RSA subjects do not clearly show the same results: DF per-
forms quite similar as DSE, and hence, HyDiff does not show any
clear benefit compared to just DF. In order to understand this subject
better, we also reported the values after 30 sec of the experiments.
These values show that DSE is able to generate a high δ value right
in the beginning, whereas fuzzing needs more time. ForHyDiff this
means the following: the impact of symbolic execution on HyDiff
for this subject would be only visible in the first seconds of the
experiment. But after 30 min, all techniques show similar results.

4.4 Analysis of Deep Neural Networks

We also propose here a non-standard application of differential
analysis to adversarial generation in neural networks with piece-
wise linear activation functions. The analysis of neural networks is

notoriously hard, due to the huge number of paths, allowing us to
evaluate HyDiff in domains of high complexity.

Given a DNN model, we first re-write it into the Java program
form. While the Java translation preserves the prediction ability
of the original DNN, the advantage is that program analysis tech-
niques and tools can now be applied for analyzing the DNN model.
Specifically, we usedHyDiff to find adversarial inputs for an image
classification network. These inputs should differ only slightly, but
should lead to different classifications. This problem seems to natu-
rally fit into the differential analysis context. Our idea is to change
up to x% of the pixels in the image, and check if there can be any
difference in the output of the network, i.e., the final classification.

For the fuzzing driver we therefore fuzz values for the complete
image, and we fuzz values and positions of the pixels to change.
Hence the fuzzing driver will have two images that differ in only
up to x% of the pixels. Then it executes the DNN model with both
inputs and measures the metrics similar to regression testing. Of
course we are particularly interested in the output difference.

For the symbolic execution we introduce changes, similar as
for the side-channel analysis, directly in the driver, so that we
execute the DNN model only once, but with a change-annotated
input. The DNN analysis specifically searches for differences in the
classification, i.e. output differences similar to regression, and not
cost differences like the side-channel analysis. Therefore, we use
the same heuristics as for regression testing,

4.4.1 Subjects. Particularly, in this experiment, we trained a DNN
model for handwritten digit recognition using the MNIST dataset
[24]. The data set comes with a training set of 60,000 examples
and a test set of 10,000 examples. The trained model has an ac-
curacy of 97.95% on the test set. It consists of 11 layers including
convolutional/max-pooling/flatten/dense layers with Rectified Lin-
ear Unit (ReLU) activations, contains 10,000 neurons, and uses the
max function in the final classification layer.

4.4.2 Results. For DNN analysis we collected the same fourmetrics
as for regression analysis (cf. Section 4.2.2). As shown in Table 3,
HyDiff can be used for the analysis of DNNs as it finds output
differences in the classification of an image when changing only
up to 1% of its pixels.

For the DNN subjects we can make the following observations:
differential fuzzing and differential symbolic execution also find
the output differences but perform very differently. Differential
fuzzing becomes faster in finding an output difference with more
pixels allowed to change, which seems reasonable as it is easier
to find differences in the classification of two images, when they
differ largely. But even for a 100% change differential fuzzing still

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Yannic Noller, Corina S. Păsăreanu, Marcel Böhme, Youcheng Sun, Hoang Lam Nguyen, and Lars Grunske

needs very long to find an output difference, which is caused by the
very long runtime of each program execution. Differential fuzzing
executes the same program execution several times to assess the
input, which makes this step even more expensive. In contrast,
differential symbolic execution becomes slower with more pixels to
change. First of all, it does not need to execute the whole program
to generate an input because it might be enough to just look at
the first two branches to extract a path condition, which leads
to another classification. Secondly, with more pixels to change,
symbolic execution will introduce more symbolic variables, which
will eventually make the path constraints quite complex, and hence,
it needs more time for them to be solved. Our results indicate that
due to the complexity of the DNN, DSE can generate only one
interesting input within the given time bound of 60min.

With HyDiff in its default setup (i.e., differential fuzzing and dif-
ferential symbolic execution start at the same time), there does not
happen any synchronization between both components because
the expensive program execution. HyDiff’s differential fuzzing
does not use any inputs from differential symbolic execution and
vice versa because they are busy with their own analysis. For this
reason HyDiff does simply produce the combined result of both
components running separately. Therefore, we decided to alter the
setup for the DNN analysis: we start differential symbolic execution
first, and with a 10min delay we start differential fuzzing, so that
fuzzing can use the already generated inputs from symbolic execu-
tion as additional seed inputs. The result for this setup (cf. Table
3) show that HyDiff combines both techniques very well: HyDiff
shows comparable times to the first output difference as differential
symbolic execution (which is significantly faster than fuzzing), but
shows significantly more output differences than fuzzing. Another
observation is that the confidence intervals for HyDiff are much
smaller than for differential fuzzing, which shows that the results
are much more robust. SoHyDiff does not only combine the results
of both components, but the components can benefit from each
others inputs to further improve the outcome.

4.5 Result Summary

HyDiff does not only combine the outcomes of fuzzing and sym-
bolic execution. It does perform a continuous synchronization
across output queues, which helps each part to find even more
divergences. For example inMath-60, Time-1, CLI3-4, and CLI5-6 (cf.
Table 1), HyDiff finds significantly more output differences than
the single components. In particular for CLI3-4 and CLI5-6 DSE
itself does not find any of them, but the inputs for decision differ-
ences identified by symbolic execution push HyDiff’s differential
fuzzer in the right direction. For the side-channel analysis HyDiff
shows a good trade-off between fuzzing and symbolic execution,
and in particular for Themis_Jetty Unsafe the hybrid technique also
outperforms the single components in terms of the generated δ
values (cf. Table 2). In the DNN analysis HyDiff finds significantly
more output differences, and for the majority of the subjectsHyDiff
is also faster in finding the first output difference (cf. Table 3).

4.6 Limitations

In addition to the benefits, it is important to discuss potential limi-
tations of our approach and evaluation. Firstly, there is the required

manual effort to prepare a program for differential analysis by
HyDiff. As mentioned in our motivating example (Sec. 2.2), our
approach needs drivers to parse the input and call the program-
under-test. Additionally, our approach expects information about
the syntactic changes in the program (e.g., for regression testing).
For fuzzing the change locations need to be specified, and for sym-
bolic execution the program needs to be annotated with the change-
annotations. In order to ensure reproducibility of our evaluation,
we make the test drivers and annotations publicly available [44].
We believe that these steps can be automated to a large extend.

Secondly, the purpose of our evaluation was to demonstrate
the versatility of HyDiff in a few case studies from very different
domains. We cannot claim, the results for each case study will
generalize for other kinds of programs (or classifiers) written in
other languages or from other domains. In order to mitigate the
impact of randomness on the results, we repeated each experiment
30 times and report 95%-confidence intervals.

Lastly, HyDiff is inherently parallel while its components are
not. The differential fuzzing (DF) and symbolic execution (DSE)
components are run in parallel to boost their advantages and miti-
gate their weaknesses. These components communicate via a shared
queue. In our evaluation, we compare one instance of HyDiff with
one instance for each of its constituent techniques. Technically, this
gives more computational resources toHyDiff. While DSE does not
support a parallel mode with a shared queue, to validate our results,
we conducted experiments running two instances of DF with a
shared queue (Parallel DF). For the regression analysis, HyDiff still
outperformed Parallel DF in terms of time to discovering an output
difference (t+odiff) for about the same number of subjects as DF.
Parallel DF was not able to identify output differences for subjects,
for which DF also did not find any output difference, i.e. the parallel
variant was not able to solve the actual limitations of DF. However,
Parallel DF produced more test cases that reveal a decision or out-
put difference (#ddi f f and #odi f f) — which is expected as Parallel
DF also generates about twice as many test cases. We note that mul-
tiple test cases may reveal the same output difference. To classify
output differences, we would need to conduct a post-processing
to further classify the outputs, e.g. in expected and unexpected
behavior, similar to [33]. For the side-channel subjects, Parallel DF
showed a slightly better performance compared to DF (t : δ > 0),
but without outperforming HyDiff. For the DNN subjects, Parallel
DF also improved the number of identified test inputs for decision
and output differences, but without any improvement on the time
to discovering an output difference (t+odiff). We further conducted
experiments with giving DSE twice the time budget of HyDiff, but
for which DSE did not show any significant improvement.

5 RELATEDWORK

Existing differential testing techniques include symbolic execution-
based [6, 33, 37, 50] and fuzzing-based [14, 17, 29, 32, 38] techniques.
With regard to symbolic execution-based techniques, HyDiff lever-
ages four-way forking in an incremental manner and introduces
novel heuristics to maximize divergence. With regard to fuzzing-
based techniques, HyDiff contributes a novel divergence-based
feedback-channel to greybox fuzzing and leverages several fitness

HyDiff: Hybrid Differential Software Analysis ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

functions to evaluate and maximize the divergence across multiple
program executions.

Differential symbolic execution. Most related toHyDiff is shadow
symbolic execution (SSE) [33], which we already discussed through-
out the paper. SSE uses four-way forking along the path(s) of a
concrete input that reaches a change. HyDiff is more general as it
also follows branches which are not already affected by a change,
but still can reach a change annotation. This allows HyDiff to
detect more divergences (improving upon effectiveness). Novel
search-heuristics and the integration with fuzzing allow HyDiff
to detect divergences faster (improving upon efficiency). Other re-
lated work includes directed incremental symbolic execution (DiSE)
[37, 50] which leverages program slicing and symbolic execution
along these slices to cover changed statements in the source code.
Such techniques could not be readily integrated with a fuzzer, as do
not consider any analysis along concrete inputs. Xu et al. [47–49]
present several techniques to maintain coverage-adequacy of a test
suite after the program was changed. However, unlike HyDiff, this
stream of works only considers a single version at a time. Further-
more they are only applicable to regression generation without any
consideration about costs.

Differential fuzzing. Bert [17, 32] is a blackbox regression testing
technique which generates random input values to expose behav-
ioral differences. In contrast, the greybox fuzzing component of
HyDiff is guided by divergence-feedback. NEZHA [38] implements
both a blackbox and a greybox fuzzing approach, showing better
performance with the greybox component. DifFuzz [29] exposes
side-channel vulnerabilities in programs using a resource-based
feedback-channel for greybox fuzzing as well as resource-related
search heuristics; in contrast to DifFuzz our fuzzing component
incorporates more sophisticated differential metrics (as DifFuzz
only looks at cost differences). DLFuzz [14] uses greybox fuzzing
for differential testing of DNNs. In contrast to all these greybox
fuzzing approaches, HyDiff leverages a novel divergence-based
feedback channel and a combination of differential metrics that
includes output difference, decision difference, and patch distance.
Moreover, HyDiff works with increased effectiveness due to the
integration with a differential symbolic execution engine.

Hybrid techniques. The integration of efficient fuzzing and ef-
fective symbolic execution-based techniques is an active area of
research [7]. There exist several works that attempt to integrate
both approaches [8, 30, 41]. Like HyDiff, most of these hybrid ap-
proaches demonstrate significant benefits of combining the random,
collateral path exploration of fuzzing with the systematic path enu-
meration of symbolic execution. To the best of our knowledge, there
does not exist an effective integration of both approaches in the
context of differential analysis as it is described here. Badger [30]
is a hybrid analysis framework that combines fuzzing and symbolic
execution for the worst-case analysis of Java byte code. Similar
to HyDiff Badger runs greybox fuzzing and symbolic execution
together which synchronize via their queues. However, Badger
performs an analysis that does not reason about multiple program
paths simultaneously and therefore does not include the advanced
features that we presented here. The fuzzing part of Badger only
needs to handle a cost metric and the branch coverage measure-
ment, in particular it does not need to further guide the fuzzing

process to areas that show differences between versions. In con-
trast, HyDiff’s fuzzing part needs to be guided to, e.g., changed
code blocks, and needs to be able to handle metrics like output
and decision difference. The symbolic execution part of Badger
simply performs a concolic execution, where nodes get selected
for exploration based on their cost value. In contrast, HyDiff’s
symbolic execution needs to handle multiple program behaviors,
and hence, uses a modified form of shadow symbolic execution
which was extended as we described in this paper.

Adversarial testing of DNNs. Recently, several quantitative cov-
erage metrics [20, 26, 35] have been proposed to guide the testing
of DNNs. Different from the adversarial testing works [27, 42, 45]
for DNNs so far, in this paper, we adopt a hybrid analysis approach.
Moreover, when applying HyDiff to DNNs, we benefit from re-
using existing software testing tools such as AFL and SPF.

Differential Verification. Demonstrating the functional equiva-
lence of two programs for all inputs is known as differential or
regression verification. For example, Lahiri et al. [23] present the
tool SymDiff, which searches for output differences by leveraging
the modular verifier Boogie [2] to generate the verification condi-
tion and the SMT solver Z3 [10] to solve it. HyDiff’s analysis is not
limited to detect output differences, but also incorporates metrics to
detect, e.g., cost differences. Hawblitzel et al. [15] propose an auto-
mated full-system verification including proving non-interference
of the information flow. Compared to such differential verification
approaches, while it would be interesting to explore the provision
of statistical guarantees [4], HyDiff cannot provide formal guar-
antees about the absence of a behavioral differences. However, the
lack of formal guarantees is a tradeoff for the scalability necessary
for the analysis of real-world applications.

6 CONCLUSION

We proposed a hybrid differential program analysis approach, HyD-
iff, combining fuzzing and symbolic execution, which are specially
tailored to differential analysis and which support each other to
amplify the exploration. The evaluation presents three applications:
regression testing, side-channel analysis and adversarial generation
for deep neural networks. We showed that even when the single
techniques failed to find any divergences, HyDiff succeeded. Addi-
tionally, our hybrid analysis outperforms the single techniques in
terms of the time to the first divergence and the total number of
identified divergences.

In the future we plan to extend our case studies and experiment
with additional heuristics, to continue the investigation of the dif-
ferential analysis for deep neural networks, and to explore more
types of change annotations to strengthen the applicability of our
differential symbolic execution.

ACKNOWLEDGMENTS

This research was partially funded by the Australian Government
through an Australian Research Council Discovery Early Career
Researcher Award (DE190100046), by the NSF Grant CCF 1901136,
and by the German Research Foundation (GR 3634/4-1 EMPRESS).

REFERENCES

[1] Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Ter-
auchi, and ShiyiWei. 2017. Decomposition instead of self-composition for proving

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Yannic Noller, Corina S. Păsăreanu, Marcel Böhme, Youcheng Sun, Hoang Lam Nguyen, and Lars Grunske

the absence of timing channels. In Proceedings of the 38th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2017, Barcelona,
Spain, June 18-23, 2017. 362–375. https://doi.org/10.1145/3062341.3062378

[2] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M.
Leino. 2006. Boogie: A Modular Reusable Verifier for Object-Oriented Programs.
In Formal Methods for Components and Objects, Frank S. de Boer, Marcello M.
Bonsangue, Susanne Graf, and Willem-Paul de Roever (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 364–387.

[3] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. 2004. Secure information
flow by self-composition. In Proceedings. 17th IEEE Computer Security Foundations
Workshop, 2004. 100–114. https://doi.org/10.1109/CSFW.2004.1310735

[4] Marcel Böhme. 2018. STADS: Software Testing as Species Discovery. ACM
Transactions on Software Engineering and Methodology 27, 2, Article 7 (June 2018),
52 pages. https://doi.org/10.1145/3210309

[5] Marcel Böhme, Bruno C. d. S. Oliveira, and Abhik Roychoudhury. 2013. Partition-
based Regression Verification. In Proceedings of the 2013 International Conference
on Software Engineering (ICSE ’13). IEEE Press, Piscataway, NJ, USA, 302–311.
http://dl.acm.org/citation.cfm?id=2486788.2486829

[6] Marcel Böhme, BrunoC. d. S. Oliveira, andAbhik Roychoudhury. 2013. Regression
Tests to Expose Change Interaction Errors. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE 2013). ACM, New York,
NY, USA, 334–344. https://doi.org/10.1145/2491411.2491430

[7] Marcel Böhme and Soumya Paul. 2016. A Probabilistic Analysis of the Efficiency
of Automated Software Testing. IEEE Transactions on Software Engineering 42, 4
(April 2016), 345–360. https://doi.org/10.1109/TSE.2015.2487274

[8] Sang K. Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012.
Unleashing Mayhem on Binary Code. In 2012 IEEE Symposium on Security and
Privacy. 380–394. https://doi.org/10.1109/SP.2012.31

[9] Jia Chen, Yu Feng, and Isil Dillig. 2017. Precise Detection of Side-Channel
Vulnerabilities using Quantitative Cartesian Hoare Logic. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017. 875–890. https://doi.org/
10.1145/3133956.3134058

[10] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
Tools and Algorithms for the Construction and Analysis of Systems, C. R. Ramakr-
ishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
337–340. https://doi.org/10.1007/978-3-540-78800-3_24

[11] Apache Software Foundation. 2019. Commons BCEL. https://commons.apache.
org/proper/commons-bcel/. Accessed: 2020-01-24.

[12] Apache Software Foundation. 2019. Commons CLI. https://commons.apache.
org/proper/commons-cli/. Accessed: 2020-01-24.

[13] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[14] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. 2018. DLFuzz:
differential fuzzing testing of deep learning systems. In Proceedings of the 2018
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena
Vista, FL, USA, November 04-09, 2018, Gary T. Leavens, Alessandro Garcia, and
Corina S. Pǎsǎreanu (Eds.). ACM, 739–743. https://doi.org/10.1145/3236024.
3264835

[15] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan Parno,
Danfeng Zhang, and Brian Zill. 2014. Ironclad Apps: End-to-End Security via
Automated Full-System Verification. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14). USENIX Association, Broomfield,
CO, 165–181.

[16] INRIA. 2019. ASM: a very small and fast Java bytecode manipulation framework.
https://asm.ow2.io. Accessed: 2020-01-24.

[17] Wei Jin, Alessandro Orso, and Tao Xie. 2010. Automated Behavioral Regression
Testing. In Third International Conference on Software Testing, Verification and
Validation, ICST 2010, Paris, France, April 7-9, 2010. IEEE Computer Society, 137–
146. https://doi.org/10.1109/ICST.2010.64

[18] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the 2014 International Symposium on Software Testing and Analysis
(ISSTA 2014). ACM,NewYork, NY, USA, 437–440. https://doi.org/10.1145/2610384.
2628055

[19] Rody Kersten, Kasper Luckow, and Corina S. Păsăreanu. 2017. POSTER: AFL-
based Fuzzing for Java with Kelinci. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’17). ACM, New York,
NY, USA, 2511–2513. https://doi.org/10.1145/3133956.3138820

[20] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding Deep Learning System Test-
ing Using Surprise Adequacy. In Proceedings of the 41st International Conference
on Software Engineering (ICSE ’19). IEEE Press, Piscataway, NJ, USA, 1039–1049.
https://doi.org/10.1109/ICSE.2019.00108

[21] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In

40th IEEE Symposium on Security and Privacy (S&P’19).
[22] Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman,

RSA, DSS, and Other Systems. In Proceedings of the 16th Annual International
Cryptology Conference on Advances in Cryptology (CRYPTO ’96). Springer-Verlag,
London, UK, UK, 104–113. http://dl.acm.org/citation.cfm?id=646761.706156

[23] Shuvendu K. Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebêlo.
2012. SYMDIFF: A Language-Agnostic Semantic Diff Tool for Imperative Pro-
grams. In Computer Aided Verification, P. Madhusudan and Sanjit A. Seshia (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 712–717.

[24] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. 2013. MNIST database.
http://yann.lecun.com/exdb/mnist/. Accessed: 2020-01-24.

[25] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from
User Space. In 27th USENIX Security Symposium (USENIX Security 18). USENIX
Association, Baltimore, MD, 973–990.

[26] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang
Chen, Ting Su, Li Li, Yang Liu, Jianjun Zhao, and YadongWang. 2018. DeepGauge:
Multi-granularity Testing Criteria for Deep Learning Systems. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering
(ASE 2018). ACM, New York, NY, USA, 120–131. https://doi.org/10.1145/3238147.
3238202

[27] Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-Xu, Chao Xie,
Li Li, Yang Liu, Jianjun Zhao, and Yadong Wang. 2018. DeepMutation: Mutation
Testing of Deep Learning Systems. In 2018 IEEE 29th International Symposium on
Software Reliability Engineering (ISSRE). 100–111. https://doi.org/10.1109/ISSRE.
2018.00021

[28] Paul Dan Marinescu and Cristian Cadar. 2013. KATCH: High-coverage Testing
of Software Patches. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE 2013). ACM, New York, NY, USA, 235–245.
https://doi.org/10.1145/2491411.2491438

[29] Shirin Nilizadeh, Yannic Noller, and Corina S. Păsăreanu. 2019. DifFuzz: Differ-
ential Fuzzing for Side-channel Analysis. In Proceedings of the 41st International
Conference on Software Engineering (ICSE ’19). IEEE Press, Piscataway, NJ, USA,
176–187. https://doi.org/10.1109/ICSE.2019.00034

[30] Yannic Noller, Rody Kersten, and Corina S. Păsăreanu. 2018. Badger: Complexity
Analysis with Fuzzing and Symbolic Execution. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2018).
ACM, New York, NY, USA, 322–332. https://doi.org/10.1145/3213846.3213868

[31] Yannic Noller, Hoang Lam Nguyen, Minxing Tang, and Timo Kehrer. 2018.
Shadow Symbolic Execution with Java PathFinder. SIGSOFT Softw. Eng. Notes 42,
4 (Jan. 2018), 1–5. https://doi.org/10.1145/3149485.3149492

[32] Alessandro Orso and Tao Xie. 2008. BERT: BEhavioral Regression Testing. In
Proceedings of the 2008 International Workshop on Dynamic Analysis: Held in
Conjunction with the ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2008) (WODA ’08). ACM, New York, NY, USA, 36–42. https:
//doi.org/10.1145/1401827.1401835

[33] Hristina Palikareva, Tomasz Kuchta, and Cristian Cadar. 2016. Shadow of a
Doubt: Testing for Divergences between Software Versions. In 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE). 1181–1192. https:
//doi.org/10.1145/2884781.2884845

[34] Corina S. Păsăreanu, Willem Visser, David Bushnell, Jaco Geldenhuys, Peter
Mehlitz, and Neha Rungta. 2013. Symbolic PathFinder: integrating symbolic
execution with model checking for Java bytecode analysis. Automated Software
Engineering 20, 3 (2013), 391–425. https://doi.org/10.1007/s10515-013-0122-2

[35] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Auto-
mated Whitebox Testing of Deep Learning Systems. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP ’17). ACM, New York, NY, USA,
1–18. https://doi.org/10.1145/3132747.3132785

[36] Suzette Person, Matthew B. Dwyer, Sebastian Elbaum, and Corina S. Pǎsǎreanu.
2008. Differential Symbolic Execution. In Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (SIGSOFT ’08/FSE-
16). ACM, New York, NY, USA, 226–237. https://doi.org/10.1145/1453101.1453131

[37] Suzette Person, Guowei Yang, Neha Rungta, and Sarfraz Khurshid. 2011. Directed
incremental symbolic execution. In Proceedings of the 32nd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2011, Mary W.
Hall and David A. Padua (Eds.). ACM, 504–515. https://doi.org/10.1145/1993498.
1993558

[38] Theofilos Petsios, Adrian Tang, Salvatore J. Stolfo, Angelos D. Keromytis, and
Suman Jana. 2017. NEZHA: Efficient Domain-Independent Differential Testing.
In 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May
22-26, 2017. IEEE Computer Society, 615–632. https://doi.org/10.1109/SP.2017.27

[39] Corina S. Pǎsǎreanu, Quoc-Sang Phan, and Pasquale Malacaria. 2016. Multi-
run Side-Channel Analysis Using Symbolic Execution and Max-SMT. In 2016
IEEE 29th Computer Security Foundations Symposium (CSF). 387–400. https:
//doi.org/10.1109/CSF.2016.34

[40] SIR. 2019. Software-artifact Infrastructure Repository. http://sir.unl.edu. Ac-
cessed: 2020-01-24.

https://doi.org/10.1145/3062341.3062378
https://doi.org/10.1109/CSFW.2004.1310735
https://doi.org/10.1145/3210309
http://dl.acm.org/citation.cfm?id=2486788.2486829
https://doi.org/10.1145/2491411.2491430
https://doi.org/10.1109/TSE.2015.2487274
https://doi.org/10.1109/SP.2012.31
https://doi.org/10.1145/3133956.3134058
https://doi.org/10.1145/3133956.3134058
https://doi.org/10.1007/978-3-540-78800-3_24
https://commons.apache.org/proper/commons-bcel/
https://commons.apache.org/proper/commons-bcel/
https://commons.apache.org/proper/commons-cli/
https://commons.apache.org/proper/commons-cli/
https://doi.org/10.1145/3236024.3264835
https://doi.org/10.1145/3236024.3264835
https://asm.ow2.io
https://doi.org/10.1109/ICST.2010.64
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/3133956.3138820
https://doi.org/10.1109/ICSE.2019.00108
http://dl.acm.org/citation.cfm?id=646761.706156
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1145/3238147.3238202
https://doi.org/10.1145/3238147.3238202
https://doi.org/10.1109/ISSRE.2018.00021
https://doi.org/10.1109/ISSRE.2018.00021
https://doi.org/10.1145/2491411.2491438
https://doi.org/10.1109/ICSE.2019.00034
https://doi.org/10.1145/3213846.3213868
https://doi.org/10.1145/3149485.3149492
https://doi.org/10.1145/1401827.1401835
https://doi.org/10.1145/1401827.1401835
https://doi.org/10.1145/2884781.2884845
https://doi.org/10.1145/2884781.2884845
https://doi.org/10.1007/s10515-013-0122-2
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/1453101.1453131
https://doi.org/10.1145/1993498.1993558
https://doi.org/10.1145/1993498.1993558
https://doi.org/10.1109/SP.2017.27
https://doi.org/10.1109/CSF.2016.34
https://doi.org/10.1109/CSF.2016.34
http://sir.unl.edu

HyDiff: Hybrid Differential Software Analysis ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

[41] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In 23nd
Annual Network and Distributed System Security Symposium, NDSS 2016, San Diego,
California, USA, February 21-24, 2016. https://doi.org/10.14722/ndss.2016.23368

[42] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska,
and Daniel Kroening. 2018. Concolic Testing for Deep Neural Networks. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE 2018). ACM, New York, NY, USA, 109–119. https://doi.org/10.
1145/3238147.3238172

[43] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199 (2013).

[44] HyDiff Replication Package v1.0.0. 2020. https://doi.org/10.5281/zenodo.3627893.
[45] Jingyi Wang, Guoliang Dong, Jun Sun, Xinyu Wang, and Peixin Zhang. 2019.

Adversarial Sample Detection for Deep Neural Network ThroughModel Mutation
Testing. In Proceedings of the 41st International Conference on Software Engineering
(ICSE ’19). IEEE Press, Piscataway, NJ, USA, 1245–1256. https://doi.org/10.1109/
ICSE.2019.00126

[46] Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wolfram Schulte. 2009.
Fitness-guided path exploration in dynamic symbolic execution. In 2009 IEEE/IFIP
International Conference on Dependable Systems Networks. 359–368. https://doi.

org/10.1109/DSN.2009.5270315
[47] Zhihong Xu, Myra B. Cohen, Wayne Motycka, and Gregg Rothermel. 2013. Con-

tinuous Test Suite Augmentation in Software Product Lines. In Proceedings of the
17th International Software Product Line Conference (SPLC ’13). ACM, New York,
NY, USA, 52–61. https://doi.org/10.1145/2491627.2491650

[48] Zhihong Xu, Yunho Kim, Moonzoo Kim, Myra B. Cohen, and Gregg Rothermel.
2015. Directed test suite augmentation: an empirical investigation. Software
Testing, Verification and Reliability 25, 2 (2015), 77–114. https://doi.org/10.1002/
stvr.1562

[49] Zhihong Xu, Yunho Kim, Moonzoo Kim, and Gregg Rothermel. 2011. A Hybrid
Directed Test Suite Augmentation Technique. In 2011 IEEE 22nd International
Symposium on Software Reliability Engineering. 150–159. https://doi.org/10.1109/
ISSRE.2011.21

[50] Guowei Yang, Suzette Person, Neha Rungta, and Sarfraz Khurshid. 2014. Directed
Incremental Symbolic Execution. ACM Trans. Softw. Eng. Methodol. 24, 1 (2014),
3:1–3:42. https://doi.org/10.1145/2629536

[51] Guowei Yang, Corina S. Păsăreanu, and Sarfraz Khurshid. 2012. Memoized
Symbolic Execution. In Proceedings of the 2012 International Symposium on Soft-
ware Testing and Analysis (ISSTA 2012). ACM, New York, NY, USA, 144–154.
https://doi.org/10.1145/2338965.2336771

[52] Michal Zalewski. 2014. American Fuzzy Lop (AFL). http://lcamtuf.coredump.cx/
afl/. Accessed: 2020-01-24.

https://doi.org/10.14722/ndss.2016.23368
https://doi.org/10.1145/3238147.3238172
https://doi.org/10.1145/3238147.3238172
https://doi.org/10.5281/zenodo.3627893
https://doi.org/10.1109/ICSE.2019.00126
https://doi.org/10.1109/ICSE.2019.00126
https://doi.org/10.1109/DSN.2009.5270315
https://doi.org/10.1109/DSN.2009.5270315
https://doi.org/10.1145/2491627.2491650
https://doi.org/10.1002/stvr.1562
https://doi.org/10.1002/stvr.1562
https://doi.org/10.1109/ISSRE.2011.21
https://doi.org/10.1109/ISSRE.2011.21
https://doi.org/10.1145/2629536
https://doi.org/10.1145/2338965.2336771
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 Overview
	2.1 HyDiff's Workflow
	2.2 Illustrating Example

	3 Differential Analysis
	3.1 Differential Fuzzing
	3.2 Differential Symbolic Execution
	3.3 Hybrid Analysis
	3.4 Implementation Details

	4 Applications and Evaluation
	4.1 Experiment Infrastructure
	4.2 Regression Testing
	4.3 Side-Channel Analysis
	4.4 Analysis of Deep Neural Networks
	4.5 Result Summary
	4.6 Limitations

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

