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Software Quality 
Assurance 

”systematic application of scientific and technological 
knowledge, methods, and experience to the design, 

implementation, testing, and documentation of software”

Software 
Testing

[IEEE2017]
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Software Testing

Figure 1: Word cloud generated using the responses to our informal survey.

Mary Jean Harrold’s roadmap, in particular, began with the fol-
lowing sentence: “A report by the Workshop on Strategic Direc-
tions in Software Quality posits that software quality will become
the dominant success criterion in the software industry [143].” Few
would argue that this prediction was inaccurate. Testing remains
one of the most widely practiced approaches for assessing (and ul-
timately improving) the quality of software, and it remains one of
the most extensively researched software engineering topics. In this
paper, as requested by the FOSE chairs, we provide an accounting
of the research in software testing over the past 14 years, focusing
on the areas in which the greatest progress has been made and the
highest impact has been achieved. We also comment on significant
challenges and opportunities for future researchers in these areas.

While we, the authors of this paper, have a certain amount of
experience in various areas of testing research, and follow much
of the testing research to the best of our capabilities, we wished
to go beyond our personal views, opinions, and knowledge of the
area in preparing this Travelogue. We therefore began by reaching
out to many of our colleagues, in an attempt to obtain some larger
consensus as to the work that the testing research community views
as having been the most important and promising. Specifically, we
identified over 50 colleagues who are currently active in testing
research, and sent them email asking two questions:

1. What do you think are the most significant contributions to test-
ing since 2000, whether from you or from other researchers?

2. What do you think are the biggest open challenges and opportu-
nities for future research in this area?

Primarily due to lack of forethought on our part, we gave our typ-
ically very busy colleagues a fairly short deadline for sending re-
sponses. We were heartened, therefore, when about 30 of them
were able to get back to us with comments and, in many cases, ex-
tensive input. To provide a quick overview of the most common
topics mentioned in the responses we received, Figure 1 contains a
word cloud that we generated using all such responses and filtering
out obvious keywords, such as “test” and “testing”.

We used our colleagues’ responses to compile lists of contribu-
tions, challenges, and opportunities, and we prioritized these based

on the frequency with which they appeared in such responses. We
classified most of the identified contributions as “research contri-
butions”, while classifying two as “practical contributions”. These
latter are contributions that, in our view, were driven more by indus-
trial effort than by research activities, and yet have had a dramatic
effect on both practice and research. As might be expected, in most
of these areas of contributions there remain challenges and oppor-
tunities for future research, many of which were mentioned by our
colleagues, and that we note in the remainder of this paper. We also
selected several areas that were seen not as areas in which substan-
tial contribution had yet been made, but rather, as areas that pose
new (or continuing) challenges and opportunities for researchers.

In presenting our thoughts on contributions and opportunities,
we attempted to cite relevant papers in the areas discussed. We
make no pretense, however, of having cited all such papers, a task
better left to survey papers, several of which we cite to guide read-
ers further. Similarly, while our colleagues’ input helped guide our
choice of topics to cover, we do not claim that our paper represents
all the relevant and noteworthy research performed in the area of
software testing in the time period considered. Such a task would
require considerably more space and time than we have available.
Nevertheless, we truly hope that the approach we followed helped
this paper better reflect the views of researchers in the software test-
ing community and provide an unbiased view on this challenging
and exciting research field.

We structure the rest of this paper as follows. Section 2 describes
research contributions and additional opportunities in these areas.
Section 3 describes practical contributions and additional opportu-
nities in these areas. Section 4 describes additional areas in which
opportunities and challenges exist. Finally, Section 5 concludes.

2. RESEARCH CONTRIBUTIONS
We classified the nine research contributions that we identified

from our colleagues’ responses into four categories: (1) automated
test input generation, (2) testing strategies, (3) regression testing,
and (4) support for empirical studies. The following subsections
present contributions in each of these categories.

118

[Orso2014]
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Regression Analysis

between two program versions 
for the same input 
➥ software maintenance



Regression Analysis

Are there unintended 
behavioral differences 

between the two 
versions?
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1  int foo (int x) {

2     int y;

3     if (x < 0) {

4-       y = -x;

4+       y = x * x;

5     } else {

6        y = 2 * x;

7     }

8+    y = y + 1;

9     if (y > 1) {

10        return 0;

11    } else {

12       if (y == 1)

13          assert(false);

14    }

15    return 1;

16 }

Fixed assertion error 
for x=-1 (returns 0).

introduced new 
assertion error 

for x=0 
(previously returned 1)
→ Regression Bug
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Worst-Case Complexity 
Analysis

Side-Channel Analysis

Robustness Analysis of 
Neural Networks

for the same program with  
two different inputs 
➥ security, reliability

input1
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Worst-Case Complexity Analysis
Goal: discover vulnerabilities related to 

algorithmic complexity

0  public void sort (int[] a) {

1     int N = a.length;

2     for (int i = 1; i < N; i++) {

3        int j = i - 1;

4        int x = a[i];

5        while ((j >= 0) && (a[j] > x)) {

6           a[j + 1] = a[j];

7           j--;

8        }

9        a[j + 1] = x;

10    }

11 }

Insertion Sort

find worst-case input: 
automated + fast + concrete

• worst-case complexity: 
O(n2)


• e.g. a=[8, 7, 6] (n=3)
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Side-Channel Analysis

• leakage of secret information

• software side-channels

• observables:


- execution time,

- memory consumption,

- response size,

- …
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Example: Side-Channel 
Vulnerability

0  boolean pwcheck_unsafe (byte[] pub, byte[] sec) {

1     if (pub.length != sec.length) {

2        return false;

3     }

4     for (int i = 0; i < pub.length; i++) {

5        if (pub[i] != sec[i]) {

6           return false;

7        }

8     }

9     return true;

10 }

Unsafe Password Checking

Problem ValidationBackground SummarySolutionsContribution
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Robustness Analysis of 
Neural Networks

Goal: identify adversarial inputs or check how 
amenable the network is for adversarial inputs
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adversarial input

• hardly perceptible perturbations

• large impact on network’s 

output
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Figure 8: Odd rows show the seed test inputs and even rows show the difference-inducing test inputs generated by DeepXplore. The
left three columns show inputs for self-driving car, the middle three are for MNIST, and the right three are for ImageNet.

allows modifying features related to the Android manifest
file and thus ensures that the application code is unaffected.
Moreover, DeepXplore only allows adding features (changing
from zero to one) but do not allow deleting features (changing
from one to zero) from the manifest files to ensure that no
application functionality is changed due to insufficient permis-
sions. Thus, after computing the gradient, DeepXplore only
modifies the manifest features whose corresponding gradients
are greater than zero.

For Contagio/VirusTotal dataset, DeepXplore follows the
restrictions on each feature as described by Šrndic et al. [79].

7 RESULTS
Summary. DeepXplore found thousands of erroneous behav-
iors in all the tested DNNs. Table 2 summarizes the numbers
of erroneous behaviors found by DeepXplore for each tested

DNN while using 2,000 randomly selected seed inputs from
the corresponding test sets. Note that as the testing set has
similar number of samples for each class, these randomly-
chosen 2,000 samples also follow that distribution. The hyper-
parameter values for these experiments, as shown in Table 2,
are empirically chosen to maximize both the rate of finding
difference-inputs as well as the neuron coverage achieved by
these inputs.

For the experimental results shown in Figure 8, we apply
three domain-specific constraints (lighting effects, occlusion
by a single rectangle, and occlusion by multiple rectangles) as
described in § 6.2. For all other experiments involving vision-
related tasks, we only use the lighting effects as the domain-
specific constraints. For all malware-related experiments, we
apply all the relevant domain-specific constraints described

10

[Pei2017]

SOSP ’17, October 28, 2017, Shanghai, China K. Pei, Y. Cao, J. Yang, S. Jana

Different lighting conditions:

all:right all:right all:right all:1 all:3 all:5 all:diver all:cheeseburger all:flamingo

DRV_C1:left DRV_C2:left DRV_C3:left MNI_C1:8 MNI_C2:5 MNI_C3:7 IMG_C1:ski IMG_C2:icecream IMG_C3:goldfish
Occlusion with a single small rectangle:

all:right all:right all:left all:5 all:7 all: 9 all:cauliflower all:dhole all:hay

DRV_C1:left DRV_C2:left DRV_C3:right MNI_C1:3 MNI_C2:4 MNI_C3:2 IMG_C1:carbonaraIMG_C2:umbrella IMG_C3:stupa
Occlusion with multiple tiny black rectangles:

all:left all:left all:left all:1 all:5 all:7 all:castle all:cock all:groom

DRV_C1:right DRV_C2:right DRV_C3:right MNI_C1:2 MNI_C2:4 MNI_C3:4 IMG_C1:beacon IMG_C2:hen IMG_C3:vestment
Figure 8: Odd rows show the seed test inputs and even rows show the difference-inducing test inputs generated by DeepXplore. The
left three columns show inputs for self-driving car, the middle three are for MNIST, and the right three are for ImageNet.

allows modifying features related to the Android manifest
file and thus ensures that the application code is unaffected.
Moreover, DeepXplore only allows adding features (changing
from zero to one) but do not allow deleting features (changing
from one to zero) from the manifest files to ensure that no
application functionality is changed due to insufficient permis-
sions. Thus, after computing the gradient, DeepXplore only
modifies the manifest features whose corresponding gradients
are greater than zero.

For Contagio/VirusTotal dataset, DeepXplore follows the
restrictions on each feature as described by Šrndic et al. [79].

7 RESULTS
Summary. DeepXplore found thousands of erroneous behav-
iors in all the tested DNNs. Table 2 summarizes the numbers
of erroneous behaviors found by DeepXplore for each tested

DNN while using 2,000 randomly selected seed inputs from
the corresponding test sets. Note that as the testing set has
similar number of samples for each class, these randomly-
chosen 2,000 samples also follow that distribution. The hyper-
parameter values for these experiments, as shown in Table 2,
are empirically chosen to maximize both the rate of finding
difference-inputs as well as the neuron coverage achieved by
these inputs.

For the experimental results shown in Figure 8, we apply
three domain-specific constraints (lighting effects, occlusion
by a single rectangle, and occlusion by multiple rectangles) as
described in § 6.2. For all other experiments involving vision-
related tasks, we only use the lighting effects as the domain-
specific constraints. For all malware-related experiments, we
apply all the relevant domain-specific constraints described

10

SOSP ’17, October 28, 2017, Shanghai, China K. Pei, Y. Cao, J. Yang, S. Jana

Different lighting conditions:

all:right all:right all:right all:1 all:3 all:5 all:diver all:cheeseburger all:flamingo

DRV_C1:left DRV_C2:left DRV_C3:left MNI_C1:8 MNI_C2:5 MNI_C3:7 IMG_C1:ski IMG_C2:icecream IMG_C3:goldfish
Occlusion with a single small rectangle:

all:right all:right all:left all:5 all:7 all: 9 all:cauliflower all:dhole all:hay

DRV_C1:left DRV_C2:left DRV_C3:right MNI_C1:3 MNI_C2:4 MNI_C3:2 IMG_C1:carbonaraIMG_C2:umbrella IMG_C3:stupa
Occlusion with multiple tiny black rectangles:

all:left all:left all:left all:1 all:5 all:7 all:castle all:cock all:groom

DRV_C1:right DRV_C2:right DRV_C3:right MNI_C1:2 MNI_C2:4 MNI_C3:4 IMG_C1:beacon IMG_C2:hen IMG_C3:vestment
Figure 8: Odd rows show the seed test inputs and even rows show the difference-inducing test inputs generated by DeepXplore. The
left three columns show inputs for self-driving car, the middle three are for MNIST, and the right three are for ImageNet.

allows modifying features related to the Android manifest
file and thus ensures that the application code is unaffected.
Moreover, DeepXplore only allows adding features (changing
from zero to one) but do not allow deleting features (changing
from one to zero) from the manifest files to ensure that no
application functionality is changed due to insufficient permis-
sions. Thus, after computing the gradient, DeepXplore only
modifies the manifest features whose corresponding gradients
are greater than zero.

For Contagio/VirusTotal dataset, DeepXplore follows the
restrictions on each feature as described by Šrndic et al. [79].

7 RESULTS
Summary. DeepXplore found thousands of erroneous behav-
iors in all the tested DNNs. Table 2 summarizes the numbers
of erroneous behaviors found by DeepXplore for each tested

DNN while using 2,000 randomly selected seed inputs from
the corresponding test sets. Note that as the testing set has
similar number of samples for each class, these randomly-
chosen 2,000 samples also follow that distribution. The hyper-
parameter values for these experiments, as shown in Table 2,
are empirically chosen to maximize both the rate of finding
difference-inputs as well as the neuron coverage achieved by
these inputs.

For the experimental results shown in Figure 8, we apply
three domain-specific constraints (lighting effects, occlusion
by a single rectangle, and occlusion by multiple rectangles) as
described in § 6.2. For all other experiments involving vision-
related tasks, we only use the lighting effects as the domain-
specific constraints. For all malware-related experiments, we
apply all the relevant domain-specific constraints described

10



Problem ValidationBackground SummarySolutionsContribution

14yannic.noller@acm.org Hybrid Differential Software Testing

input1

program P

input2

program P

2

=?
behavior1

behavior2

x

y
input

program P

program P’

1

=?
behavior1

behavior2

x

(My) Research Problem
➥ identify behavioral differences



Problem ValidationBackground SummarySolutionsContribution

15yannic.noller@acm.org Hybrid Differential Software Testing

fuzzing 

 

symbolic execution

exchange 
interesting 

inputs

input 
selection

input 
mutation

input 
generation

input 
assessment

exploration

Core Contributions
(1) the concept of differential fuzzing

(2) the concept of differential 
dynamic symbolic execution

(3) the concept of hybrid analysis in 
differential program analysis

(4) the concept of a hybrid setup for 
applying fuzzing and symbolic 
execution in parallel

HyDiff



Fuzzing
• term fuzzing was coined by Miller et al. in 1990, 

when they used a random testing tool to investigate 
the reliability of UNIX tools


• classification based on degree of program analysis


• blackbox / greybox / whitebox fuzzing


• classification based on generation technique


• search-based fuzzing


• generative fuzzing


• state-of-the-art in vulnerability detection: 
coverage-based, mutational fuzzing

[Miller1990]
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Coverage-Based 
Mutational Fuzzing

initial seed files queue trim input mutate 
repeatedly

mutated files that showed 
(new) interesting behavior

hangs

Zz Z

crashes

4321
5

mutant selection

6
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Symbolic Execution

• introduced by King, Clarke, and Boyer et al.


• analysis of programs with unspecified inputs, i.e. 
execute a program with symbolic inputs


• for each path, build a path condition

[King1976]
[Clarke1976]
[Boyer1975]
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1  int foo (int x) {

2     int y;

3     if (x < 0) {

4        y = -x;

5     } else {

6        y = 2 * x;

7     }

8     if (y > 1) {

9        return 0;

10    } else {

11       if (y == 1)

12          assert(false);

13    }

14    return 1;

15 }

[TRUE] x=𝕏

[TRUE] 𝕏 < 0 ?

[𝕏<0] y := -𝕏

[𝕏<0] -𝕏 > 1 ?

[𝕏<0⋀-𝕏>1]

return 0;

[𝕏<0⋀-𝕏≤1]

-𝕏 = 1 ?

[𝕏<0⋀-𝕏≤1⋀-𝕏=1]

assert(false);

[𝕏<0⋀-𝕏≤1⋀-𝕏≠1] 
return 1;

[𝕏≥0] y := 2*𝕏

[𝕏≥0] 2*𝕏 > 1 ?

true false

…
true false

true false

falsetrue

[𝕏<-1]

[𝕏=-1]

UNSAT

[𝕏=0]

return 1;

[𝕏>0]

return 0;

path condition

Example: Symbolic Execution
Problem ValidationBackground SummarySolutionsContribution
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Shadow Symbolic Execution
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[Palikareva2016]

[TRUE] 𝛂 ?

[𝛂] … [¬𝛂] …

true false

Two-way Forking

Four-way Forking

[TRUE] change(𝛂, 𝛃) ?

[𝛂∧𝛃] … [¬𝛂∧¬𝛃] …

old: true 
new: true

old: false 
new: false

old: false 
new: true

old: true 
new: false

[𝛂∧¬𝛃] … [¬𝛂∧𝛃] …

sameTRUE sameFALSE diffTRUE diffFALSE

2.4 differential program analysis 21

Table 1: Change-Annotations by Shadow Symbolic Execution [141].

Change Type Example

Update assignment x = x + change(E1, E2);

Update condition if(change(E1, E2)) ...

Add extra assignment x = change(x, E);

Remove assignment x = change(E, x);

Add conditional if(change(false, C)) ...

Remove conditional if(change(C, false)) ...

Remove code if(change(true, false)) ...

Add code if(change(false, true)) ...

existing assignment: x = x + change(E1, E2); the variable x holds two expressions, x +

E2 for the new version and x + E1 for the old version.
SSE performs dynamic symbolic-execution on such a unified program version, which is

implemented in two phases: (1) the concolic phase, and (2) the bounded symbolic execution
(BSE) phase.

In the first phase, SSE simply follows the concrete execution of test inputs from an ex-
isting test suite, while it checks for divergences along the control-flow of the two versions.
This exploration is driven by the idea of four-way forking. In traditional symbolic execution
every branching condition introduces two forks to explore the true and false branches.
Shadow symbolic execution instead introduces four forks to investigate all four combina-
tions of true and false branches for both program versions. As long as there is no concrete
divergence, SSE follows the so-called sameTrue and sameFalse branch, which denotes that
both concrete executions take the same branches. Additionally, SSE checks the satisfiability
of the path constraints for the other two branching options, where both versions take dif-
ference branches. These branches are called diffTrue and diffFalse paths. For every feasible
diff path, SSE generates a concrete input and stores the divergence point for later explo-
ration by the second phase. As long there is no concrete divergence, SSE continues until
the end of the program.

When SSE hits the mentioned addition or a removal of straightline code blocks, it
immediately stores a divergence point. This conservative handling leads to an over-
approximation of the diff paths because the added / deleted code may not necessarily
lead to an actual divergence.

The second phase performs bounded symbolic execution (BSE), only on the new version,
from the stored divergence points to further investigate the divergences.

At the end, Palikareva et al. [141] perform some post-processing of the generated inputs
to determine whether they expose some observable differences, e.g., by comparing the
outputs and the exit codes. Palikareva et al. [141] implemented their approach on top of
the KLEE symbolic execution engine [33].

Limitations of Shadow Symbolic Execution. Shadow symbolic execution as introduced
by Palikareva et al. [141] is driven by concrete inputs from an existing test suite. While this
exploration strategy tries to focus on constraining the search space, it might miss important
divergences as it strongly depends on the quality of these initial test input. In particular SSE
might miss deeper divergences in the BSE phase because of limiting prefixes in the path
constraints. Since BSE is started from the identified divergence points, it inherits the path
constraint prefix from the concrete input that has been followed to find this divergence. In
general, when there are several paths from the beginning of the program to this divergence,

[ March 29, 2020 at 11:53 – classicthesis version 0.1 ]



Why combine 
Fuzzing and Symbolic Execution?

input reasoning ability, 
but path explosion and 

constraint solving

good in finding 
shallow bugs, but bad 
in finding deep program 

paths
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• regression analysis 

• side-channel analysis 

• worst-case complexity 
analysis 

• robustness analysis of 
neural networks

➡ not directed to differential behavior

➡ typical fuzzing problems

➡ exhaustive exploration necessary

➡ abstractions, bounded analysis, 
depend on models

[Person2008, Person2011, 
Yang2012, Orso2008, Taneja2008]

[Antonopoulos2017, Chen2017, 
Pasareanu2016, Brennan2018]

[Ma2018, Pei2017, Sun2018, 
Goodfellow2014, Tian2018]

[Petsios2017, Lemieux2018, 
Burnim2009, Luckow2017]
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Differential Metrics
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• output difference (odiff)


• decision difference (ddiff)


• cost difference (cdiff)


• patch distance (only for regression testing)



Differential Fuzzing
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differences

check for new 
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5 mutant selection by input evaluation for the 
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6
fuzzing driver

P[x1, …, xn]
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Differential Dynamic SymExe
Problem ValidationBackground SummarySolutionsContribution

26yannic.noller@acm.org Hybrid Differential Software Testing

import inputsexport inputs
interesting input

Trie Extension / 
Input Assessment

heuristics-based 
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Exploration
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HyDiff’s overview
Problem ValidationBackground SummarySolutionsContribution

27yannic.noller@acm.org Hybrid Differential Software Testing

Input
program 
versions

seed input 
files

change-annotated 
program

Fuzzing Symbolic Execution

import

H
yD

iff

ICFGinstrumentation

assessment trie extension / 
assessment

constraint solving / 
input generation

exploration

mutate 
inputs

import

fuzzer output 
queue

Output

symbc output 
queue

input +odiff +ddiff +crash +cdiff +patch-dist +cov
id:0001 X X X
id:0002 X X
id:0003 X X

… … … … … … …

set of divergence revealing test inputs



Research Questions
RQ1:  How good is differential fuzzing and what are the limitations?
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RQ2:  How good is differential dynamic symbolic execution and 
what are the limitations?

RQ3:  Can the hybrid approach outperform the single techniques?
RQ4:  Can the hybrid approach not only combine the results of 
fuzzing and symbolic execution, but also amplify the search itself 
and generate even better results than each approach on its own?

RQ5:  Can the proposed hybrid differential software testing 
approach reveal behavioral differences in software? 



Evaluation Strategy
Quantitative analysis based on benchmarks in the specific 
application areas in differential analysis:
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Worst-Case Complexity 
Analysis

Regression Analysis

Side-Channel Analysis

Robustness Analysis of 
Neural Networks

A1

A2

A3

A4



Evaluation Metrics
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Worst-Case Complexity 
Analysis

Regression Analysis

Side-Channel Analysis

Robustness Analysis of 
Neural Networks

• average time to first output difference 
(t +odiff)


• tmin


• average output differences (#odiff)

• average decision differences (#ddiff)

A1

A2

A3

A4

• average maximum cost

• costmax


• time to first cost improvement



Evaluation Infrastructure
What to compare?
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Differential Fuzzing (DF)

Differential Dynamic Symbolic Execution (DDSE)

Hybrid Differential Software Testing (HyDiff)

DDSE with double time budget (DDSEx2T)

Parallel Differential Fuzzing (PDF)



Problem ValidationBackground SummarySolutionsContribution

32yannic.noller@acm.org Hybrid Differential Software Testing

Regression Analysis

82
va

li
d

a
ti

o
n

Table 6: Results for A1 regression analysis (t=600sec=10min, 30 runs). The bold values represent significant differences to the closest other technique verified
with the Wilcoxon ranked sum test (↵ = 0.05).

Subject Differential Fuzzing (DF) Parallel Differential Fuzzing (PDF) Differential Dynamic Sym. Exec. (DDSE) DDSE double time budget (DDSEx2T) HyDiff
(# changes) t +odiff tmin #odiff #ddiff t +odiff tmin #odiff #ddiff t +odiff tmin #odiff #ddiff t +odiff tmin #odiff #ddiff t +odiff tmin #odiff #ddiff

TCAS-1 (1) - - 0.00 (+-0.00) 0.00 (+-0.00) - - 0.00 (+-0.00) 0.00 (+-0.00) 20.10 (+-0.14) 19 1.00 (+-0.00) 3.00 (+-0.00) 20.10 (+-0.14) 19 1.00 (+-0.00) 3.00 (+-0.00) 49.87 (+-5.48) 29 1.00 (+-0.00) 4.67 (+-0.40)
TCAS-2 (1) 441.83 (+-57.70) 120 0.70 (+-0.23) 2.13 (+-0.73) 335.93 (+-58.24) 16 1.57 (+-0.33) 5.40 (+-1.29) 170.07 (+-0.32) 168 1.00 (+-0.00) 9.00 (+-0.00) 170.07 (+-0.32) 168 1.00 (+-0.00) 9.00 (+-0.00) 186.87 (+-12.30) 92 1.23 (+-0.18) 13.83 (+-0.37)
TCAS-3 (1) 588.43 (+-15.18) 392 0.10 (+-0.11) 38.63 (+-1.96) 531.87 (+-30.90) 295 0.67 (+-0.27) 55.53 (+-2.18) 230.37 (+-0.52) 228 2.00 (+-0.00) 19.00 (+-0.00) 230.37 (+-0.52) 228 2.00 (+-0.00) 19.00 (+-0.00) 263.20 (+-3.61) 236 2.00 (+-0.00) 57.43 (+-1.54)
TCAS-4 (1) 28.47 (+-10.42) 2 1.00 (+-0.00) 18.27 (+-1.06) 9.27 (+-3.34) 1 1.00 (+-0.00) 24.10 (+-1.24) - - 0.00 (+-0.00) 3.00 (+-0.00) - - 0.00 (+-0.00) 3.00 (+-0.00) 43.70 (+-14.01) 3 1.00 (+-0.00) 22.53 (+-1.01)
TCAS-5 (1) 184.93 (+-46.66) 24 2.00 (+-0.00) 31.97 (+-1.06) 79.77 (+-21.40) 3 2.00 (+-0.00) 40.00 (+-1.73) 173.40 (+-0.34) 171 2.00 (+-0.00) 23.00 (+-0.00) 173.40 (+-0.34) 171 2.00 (+-0.00) 23.00 (+-0.00) 94.60 (+-30.72) 1 2.00 (+-0.00) 49.83 (+-1.27)
TCAS-6 (1) 233.63 (+-54.48) 4 0.97 (+-0.06) 4.13 (+-0.83) 114.63 (+-37.12) 15 1.00 (+-0.00) 9.50 (+-0.98) 4.73 (+-0.16) 4 1.00 (+-0.00) 6.00 (+-0.00) 4.73 (+-0.16) 4 1.00 (+-0.00) 6.00 (+-0.00) 7.57 (+-0.26) 6 1.00 (+-0.00) 10.37 (+-0.70)
TCAS-7 (1) - - 0.00 (+-0.00) 0.00 (+-0.00) 581.60 (+-28.73) 164 0.07 (+-0.09) 0.27 (+-0.36) 73.50 (+-0.20) 72 2.00 (+-0.00) 6.00 (+-0.00) 73.50 (+-0.20) 72 2.00 (+-0.00) 6.00 (+-0.00) 71.70 (+-1.71) 62 2.00 (+-0.00) 8.93 (+-0.39)
TCAS-8 (1) - - 0.00 (+-0.00) 0.00 (+-0.00) - - 0.00 (+-0.00) 0.00 (+-0.00) 78.73 (+-1.24) 75 2.00 (+-0.00) 6.00 (+-0.00) 78.73 (+-1.24) 75 2.00 (+-0.00) 6.00 (+-0.00) 65.33 (+-0.75) 61 2.00 (+-0.00) 8.77 (+-0.49)
TCAS-9 (1) 221.73 (+-48.83) 10 1.00 (+-0.00) 6.13 (+-0.85) 109.73 (+-28.35) 4 1.00 (+-0.00) 9.37 (+-0.44) 148.57 (+-1.76) 143 1.00 (+-0.00) 15.00 (+-0.00) 148.57 (+-1.76) 143 1.00 (+-0.00) 15.00 (+-0.00) 185.53 (+-18.42) 39 1.00 (+-0.00) 22.37 (+-0.89)
TCAS-10 (2) 173.47 (+-46.27) 1 1.93 (+-0.09) 12.27 (+-1.69) 100.53 (+-25.20) 3 2.00 (+-0.00) 18.07 (+-1.07) 4.87 (+-0.52) 4 2.00 (+-0.00) 12.00 (+-0.00) 4.87 (+-0.52) 4 2.00 (+-0.00) 12.00 (+-0.00) 7.63 (+-0.22) 7 2.00 (+-0.00) 21.30 (+-0.82)
Math-10 (1) 221.13 (+-56.26) 10 64.50 (+-15.98) 15.50 (+-2.35) 109.53 (+-18.08) 13 172.37 (+-26.21) 24.03 (+-1.33) 2.97 (+-0.17) 2 7.00 (+-0.00) 10.00 (+-0.00) 2.97 (+-0.17) 2 7.00 (+-0.00) 10.00 (+-0.00) 3.87 (+-0.20) 3 44.33 (+-5.47) 32.00 (+-1.39)
Math-46 (1) 377.87 (+-63.43) 77 0.80 (+-0.14) 36.33 (+-1.07) 270.07 (+-50.22) 8 1.00 (+-0.00) 43.03 (+-0.78) 118.93 (+-0.90) 116 1.00 (+-0.00) 5.60 (+-0.18) 118.93 (+-0.90) 116 1.00 (+-0.00) 8.00 (+-0.00) 122.00 (+-8.34) 49 1.00 (+-0.00) 38.17 (+-0.82)
Math-60 (7) 6.93 (+-0.63) 4 219.17 (+-5.26) 92.90 (+-1.64) 5.90 (+-0.47) 4 483.03 (+-9.52) 138.10 (+-3.56) 2.27 (+-0.16) 2 2.00 (+-0.00) 3.00 (+-0.00) 2.27 (+-0.16) 2 2.00 (+-0.00) 3.00 (+-0.00) 4.77 (+-0.15) 4 234.23 (+-5.63) 94.20 (+-2.67)

Time-1 (14) 5.17 (+-1.20) 2 123.30 (+-5.86) 170.63 (+-3.43) 3.30 (+-0.60) 2 221.00 (+-7.84) 249.10 (+-4.29) 5.23 (+-0.18) 4 33.00 (+-0.00) 32.00 (+-0.00) 5.23 (+-0.18) 4 33.00 (+-0.00) 32.00 (+-0.00) 3.80 (+-0.69) 1 189.73 (+-11.94) 225.33 (+-5.62)

CLI1-2 (13) - - 0.00 (+-0.00) 159.53 (+-4.05) - - 0.00 (+-0.00) 202.17 (+-3.48) - - 0.00 (+-0.00) 4.00 (+-0.00) - - 0.00 (+-0.00) 4.00 (+-0.00) - - 0.00 (+-0.00) 169.40 (+-4.07)
CLI2-3 (13) 10.83 (+-3.33) 2 82.30 (+-3.98) 176.83 (+-3.62) 4.83 (+-1.29) 1 161.60 (+-6.62) 242.53 (+-6.92) - - 0.00 (+-0.00) 37.00 (+-0.00) - - 0.00 (+-0.00) 37.00 (+-0.00) 13.27 (+-3.62) 2 84.63 (+-4.24) 242.70 (+-3.80)
CLI3-4 (8) 7.43 (+-1.60) 1 96.73 (+-4.54) 279.13 (+-4.51) 7.20 (+-1.85) 2 97.87 (+-4.02) 467.27 (+-5.05) 4.07 (+-0.36) 3 1.00 (+-0.00) 12.00 (+-0.00) 4.07 (+-0.36) 3 1.00 (+-0.00) 12.00 (+-0.00) 8.93 (+-2.13) 2 113.33 (+-4.80) 471.50 (+-8.93)
CLI4-5 (13) 589.57 (+-16.05) 358 0.07 (+-0.09) 219.30 (+-3.74) - - 0.00 (+-0.00) 274.43 (+-4.22) - - 0.00 (+-0.00) 4.00 (+-0.00) - - 0.00 (+-0.00) 4.00 (+-0.00) 551.97 (+-45.65) 125 0.13 (+-0.12) 235.17 (+-5.73)
CLI5-6 (21) 4.13 (+-1.04) 1 143.87 (+-4.99) 182.00 (+-5.54) 3.43 (+-0.72) 1 277.17 (+-6.81) 272.17 (+-7.32) - - 0.00 (+-0.00) 5.00 (+-0.00) - - 0.00 (+-0.00) 5.00 (+-0.00) 6.17 (+-1.31) 2 177.80 (+-4.39) 214.47 (+-6.38)

 HyDiff classifies all 
subjects correctly.

Components do benefit 
from each other.
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Figure 1: 03 regex 3hexcolor : output di↵erence for DF, PDF, DDSE, and HyDiff (lines and bands show
averages and 95% confidence intervals across 30 repetitions).

1

DDSE quickly 
makes progress, DF 

continuously improves 
the score.

HyDiff 
successfully 

combines strengths 
of DDSE and DF.

HyDiff 
outperforms the 
components in 

isolation.
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secret = change(secret1, secret2)

• in regression testing: changes in the program

• in side-channel analysis: changes in the input

Side-Channel Analysis
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Side-Channel Analysis
106 validation

Table 13: The results of applying differential fuzzing to the Themis subjects. Discrepancies are high-
lighted in red and italics.

Benchmark Version Differential Fuzzing (DF) Themis
� �max t : � > 0 ✏ = 64 ✏ = o Time (s)

Spring-Security Safe 1.00 (+-0.00) 1 4.77 (+-1.07) 3 3 1.70

Spring-Security Unsafe 149.00 (+-0.00) 149 4.17 (+-0.90) 3 3 1.09

JDK7-MsgDigest Safe 1.00 (+-0.00) 1 10.77 (+-2.12) 3 3 1.27

JDK6-MsgDigest Unsafe 140.03 (+-20.39) 263 3.20 (+-0.81) 3 3 1.33

Picketbox Safe 1.00 (+-0.00) 1 16.90 (+-3.89) 3 7 1.79

Picketbox Unsafe 363.70 (+-562.18) 8, 822 5.13 (+-1.83) 3 3 1.55

Tomcat Safe 25.07 (+-0.36) 26 19.90 (+-9.29) 3 7 9.93

Tomcat Unsafe 49.00 (+-0.36) 50 23.53 (+-9.73) 3 3 8.64

Jetty Safe 11.77 (+-0.60) 15 3.77 (+-0.72) 3 3 2.50

Jetty Unsafe 70.87 (+-6.12) 105 6.83 (+-1.62) 3 3 2.07

orientdb Safe 1.00 (+-0.00) 1 16.60 (+-5.14) 3 7 37.99

orientdb Unsafe 458.93 (+-685.64) 10, 776 4.77 (+-1.06) 3 3 38.09

pac4j Safe 10.00 (+-0.00) 10 1.10 (+-0.11) 3 7 3.97

pac4j Unsafe 11.00 (+-0.00) 11 1.13 (+-0.12) 3 3 1.85

pac4j Unsafe* 39.00 (+-0.00) 39 1.10 (+-0.11) - - -
boot-auth Safe 5.00 (+-0.00) 5 1.00 (+-0.00) 3 7 9.12

boot-auth Unsafe 101.00 (+-0.00) 101 1.00 (+-0.00) 3 3 8.31

tourPlanner Safe 0.00 (+-0.00) 0 - 3 3 22.22

tourPlanner Unsafe 238.00 (+-21.78) 353 57.07 (+-6.47) 3 3 22.01

DynaTable Unsafe 75.40 (+-3.83) 94 3.90 (+-0.97) 3 3 1.165

Advanced_table Unsafe 23.03 (+-8.08) 73 783.80 (+-318.00) 3 3 2.01

OpenMRS Unsafe 206.00 (+-0.00) 206 14.03 (+-3.60) 3 3 9.71

OACC Unsafe 49.90 (+-0.19) 50 3.07 (+-0.77) 3 3 1.83

the intermediate representations of the different analysis types, and can thus be consid-
ered negligible. However, for the safe variants of the subjects LoopAndbranch and gpt14 DF
identified large � values, which indicates that the repaired versions are in fact not safe.

The large � value for LoopAndbranch is caused by an integer overflow inside the calcu-
lation. Blazer and Themis cannot identify this � because they do not handle overflow in
their analysis. In contrast, DF does execute the actual Java bytecode that allows overflows.

Although the � value for the safe version of the subject gpt14 shows some great improve-
ment over the unsafe version, it is still quite high. It is triggered by a vulnerability where
the secret information depends on an extra if statement, which has been confirmed by the
Themis developers.

Differential Fuzzing (DF) on Themis benchmark. In addition to the subjects by Blazer
[104], Table 13 shows the results for the subjects by Themis [110], for which Themis re-
ported their results with regard to an ✏ = 64 and ✏ = 0. This can be read like follows: for
a safe version with ✏ = 0 Themis reports that there is absolutely no vulnerability and for a
safe version with ✏ = 64 Themis reports that there might be a vulnerability, which is hardly
exploitable. Similarly as for the Blazer subjects, differential fuzzing (DF) successfully iden-
tified vulnerabilities in the unsafe versions of the Themis subjects and for the majority of

DF can find the same vulnerabilities as static analysis

well-balanced combination: fast and high delta 
(important to assess the severity of vulnerability)
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Purpose: stress test proposed technique

Robustness Analysis of 
Neural Networks

a[i][j] = change(a[i][j], value);

• similar to SC analysis: changes in the input

• similar to regression analysis: search for output differences

• idea: allow up to x% changes in the pixels of the input image
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NN Analysis

Shows the limitations of 
both components.

11
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Table 15: Results for robustness analysis of neural networks (t=3600sec=60min, 30 runs). The bold values represent significant differences to the closest other
technique verified with the Wilcoxon ranked sum test (↵ = 0.05). DDSEx2T produces the exact same results as DDSE.

Subject Differential Fuzzing (DF) Parallel Differential Fuzzing (PDF) Differential Dynamic Sym. Exec. (DDSE) HyDiff
(% change) t +odiff tmin #odiff #ddiff t +odiff tmin #odiff #ddiff t +odiff tmin #odiff #ddiff t +odiff tmin #odiff #ddiff

1 2, 725.40 (+-341.09) 1, 074 0.57 (+-0.20) 7.73 (+-0.18) 2, 928.60 (+-289.44) 1, 202 1.00 (+-0.31) 12.00 (+-0.48) 296.03 (+-1.49) 289 1.00 (+-0.00) 1.00 (+-0.00) 297.10 (+-2.38) 267 1.20 (+-0.14) 6.10 (+-0.11)
2 2, 581.47 (+-326.21) 1, 032 0.93 (+-0.28) 7.93 (+-0.13) 2.509.20 (+-289.37) 1, 117 1.23 (+-0.33) 12.63 (+-0.48) 309.77 (+-7.04) 293 1.00 (+-0.00) 1.00 (+-0.00) 297.93 (+-1.29) 292 1.53 (+-0.20) 6.93 (+-0.13)
5 2, 402.97 (+-329.59) 1, 189 1.23 (+-0.37) 6.47 (+-0.18) 2, 501.43 (+-285.86) 1, 429 1.70 (+-0.44) 10.33 (+-0.43) 304.53 (+-1.06) 300 1.00 (+-0.00) 1.00 (+-0.00) 301.83 (+-1.16) 296 2.07 (+-0.29) 6.90 (+-0.17)
10 2, 155.40 (+-343.76) 996 1.57 (+-0.34) 8.10 (+-0.17) 2, 127.70 (+-229.21) 1, 418 2.20 (+-0.33) 11.23 (+-0.40) 311.90 (+-0.74) 308 1.00 (+-0.00) 1.00 (+-0.00) 311.07 (+-1.01) 306 2.37 (+-0.31) 7.00 (+-0.13)
20 1, 695.83 (+-228.18) 953 2.70 (+-0.37) 9.13 (+-0.12) 1, 897.67 (+-219.97) 1, 340 3.30 (+-0.49) 11.57 (+-0.50) 346.87 (+-1.98) 339 1.00 (+-0.00) 1.00 (+-0.00) 341.83 (+-1.27) 336 3.13 (+-0.34) 7.20 (+-0.14)
50 1, 830.83 (+-259.79) 1, 220 2.43 (+-0.42) 6.33 (+-0.21) 1, 696.10 (+-86.20) 1, 423 3.80 (+-0.35) 12.00 (+-0.39) 455.03 (+-1.62) 449 1.00 (+-0.00) 1.00 (+-0.00) 452.63 (+-2.06) 434 3.77 (+-0.34) 7.27 (+-0.16)

100 1, 479.17 (+-231.25) 960 2.47 (+-0.37) 9.37 (+-0.20) 1, 790.87 (+-270.10) 1, 109 3.03 (+-0.54) 13.97 (+-0.68) 583.33 (+-2.83) 571 1.00 (+-0.00) 1.00 (+-0.00) 575.13 (+-2.65) 564 3.10 (+-0.35) 7.60 (+-0.18)

HyDiff can combine them so that 
both can benefit from each other
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RQ 1: Differential Fuzzing
• Regression: performs quite reasonable, but not all 

subject correctly classified (parallel DF did not help)

• WCA: improves cost continuously over time

• SC: outperforms Blazer and Themis

• NN: effective, but very slow (gets better with more x%)

Differential Fuzzing continuously improves its 
differential analysis over time

Parallel Differential Fuzzing even better, 
sometimes outperformed hybrid combination
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RQ 2: Differential Dynamic 
Symbolic Execution

• Regression: fast in finding output differences, but not 
all subject correctly classified 


• WCA: often stays in plateaus without improvement, but 
good in finding some first slowdown


• SC: slow in the beginning, but eventually high delta

• NN: very fast for first output difference, but limited by 

heavy constraint solving

DDSE develops 
in jumps and only 

rarely in continuous 
improvement

effective technique 
due to constraint 

solving

DDSE with twice the 
time budget does not 

improve the result
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RQ 3+4: Hybrid combination

• Regression: HyDiff finds all output differences and often 
generates higher values in a shorter time period


• WCA: clearly outperforms components

• SC: no clear improvement, but well balanced combination

• NN: good combination, finds output differences and is 

fast

HyDiff does not only combine results of 
components but also amplifies them
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• Regression: crashes not present, but inputs for 
behavioral differences


• WCA: AC vulnerabilities identified

• SC: all vulnerabilities identified

• NN: limits of HyDiff, however found adversarial inputs

RQ 5: HyDiff for Differential 
Testing

HyDiff is effective for differential testing
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Why combine 
Fuzzing and Symbolic Execution?

input reasoning ability, 
but path explosion and 

constraint solving

good in finding 
shallow bugs, but bad 
in finding deep program 

paths

Problem ValidationBackground SummarySolutionsContribution

26yannic.noller@acm.org Hybrid Differential Software Testing

Differential Fuzzing
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mutate 
repeatedly

mutated files that showed 
(new) interesting behavior

4

parse

input

determine

differences

behavioral 
differences

check for new 
interesting, 
differential 
properties

5 mutant selection by input evaluation for the 
instrumented program P

6
fuzzing driver

P[x1, …, xn]

P[y1, …, yn]

cov1,

diff. metrics1

y1, …, yn

x1, …, xn

cov2,

diff. metrics2

Differential Dynamic SymExe
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import inputsexport inputs
interesting input

Trie Extension / 
Input Assessment

heuristics-based 
analysis

concolic execution
includes

Exploration
Input 
Generation

most promising node

trie-guided symbolic 
execution

bounded symbolic 
execution

model generation

input generation

new input

1

2

3
4

5

path condition

DDSE

HyDiff’s overview
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Fuzzing Symbolic Executioninstrumentation

import

mutate
inputs

assessment

fuzzer output
queue

program
versions

seed input
files

change-annotated
program

symbc output
queue

constraint solving / 
input generation

trie extension /
assessment exploration

ICFG

set of divergence revealing test inputs

input +odiff +ddiff +crash +cdiff +patch-dist +cov

id:0001 X X X

id:0002 X X

id:0003 X X

... ... ... ... ... ... ...

import

Input

Output

HyDiff
HyDiff

Hy
Di
ff
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