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ABSTRACT

Differential program analysis means to identify the behavioral di-
vergences in one or multiple programs, and it can be classified into
two categories: identify the behavioral divergences (1) between two
program versions for the same input (aka regression analysis), and
(2) for the same program with two different inputs (e.g, side-channel
analysis). Most of the existent approaches for both subproblems try
to solve it with single techniques, which suffer from its weaknesses
like scalability issues or imprecision. This research proposes to
combine two very strong techniques, namely fuzzing and symbolic
execution to tackle these problems and provide scalable solutions
for real-world applications. The proposed approaches will be im-
plemented on top of state-of-the-art tools like AFL and Symbolic
PathFinder to evaluate them against existent work.
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1 INTRODUCTION

Differential analysis aims to find different behaviors in programs.
This includes the identification of divergences between two pro-
gram versions for the same input (regression analysis), but also
the identification of divergent behaviors for different inputs for
the same program. Whereas regression analysis is interested in
verifying software patches for unintended behavioral changes, the
second problem can be used in security analysis to identify long
running program paths (worst-case complexity analysis - WCA) that
can be used by a potential attacker to conduct a denial of service
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attack, or to locate side-channel vulnerabilities that can be used to
expose secret information (side-channel analysis). Therefore, having
effective and scalable techniques to perform a differential analysis
of programs is crucial for testing real-world software.

Fuzzing has become one of the most promising testing tech-
niques for finding bugs and security vulnerabilities in software
[10, 26]. Even though a large amount of invalid inputs get gener-
ated, fuzzing can be more effective in practice than more complex
testing techniques due to its low computation overhead. Although,
fuzzers are known to be good at identifying shallow bugs, they
may fail to execute deep program paths [24], i.e. paths that are
guarded by specific conditions. On the other hand, symbolic ex-
ecution techniques [9, 23] are particularly well suited to explore
various branches including paths that require these specific condi-
tions. However, symbolic execution is usually muchmore expensive
in terms of computational resources used during exploration.

Worst-case complexity analysis is mostly performed on symbolic
execution based approaches [5, 14] or pure fuzzing approaches
[13, 20], and both variants suffer from its weaknesses like scalabil-
ity issues for symbolic execution based approaches and imprecision
for fuzzing based approaches. Existent techniques for side-channel
analysis, e.g., [2, 4, 7], are too inaccurate and too imprecise for
real-world applications. State of the art approaches for regression
analysis [17, 19, 27] aim at covering the changed behavior, but
might miss important divergences due to, e.g., imprecise constraint
handling. As Palikareva et al. [17] already mentioned, testing evolv-
ing software is a difficult problem, which is unlikely to be solved
by a single technique.

There are approaches on how to combine fuzzing with symbolic
execution for test case generation [6, 8, 11], above all Driller [24]
that combines the AFL fuzzer with the angr symbolic execution en-
gine. All these combinations try to combine the strengths of fuzzing
and symbolic execution in order to overcome their weaknesses.
However, neither of them focus on the problem of differential pro-
gram analysis, but mainly on generating high-coverage test suites.
Differential program analysis needs a multi-dimensional approach
with more sophisticated cost functions. Especially the symbolic
execution side needs to be designed to not only solve constraints
for unexplored paths, but to also choose promising paths that likely
lead to a measurable difference. Therefore, this research proposes to
explore combinations of cost-guided fuzzing and dynamic symbolic
execution driven by appropriate heuristics to tackle the problem
of differential program analysis, namely worst-case complexity
analysis, side-channel analysis and regression analysis.

In order to evaluate this approach, this work targets to build tools
based on the fuzzer AFL (together with Kelinci [12], an interface
for AFL that enables fuzzing of Java programs), and the symbolic
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execution engine Symbolic PathFinder (SPF) [22]. Such new tools
can be evaluated against existing work in terms of effectiveness
and efficiency. Already performed experiments with such a combi-
nation of fuzzing and symbolic for WCA show promising results
in outperforming the single techniques (cf. the description of Bad-
ger in Section 3.1). Additionally, differential fuzzing (so far without
symbolic execution) was successfully applied to detect side-channel
vulnerabilities (cf. Section 3.2).

Efficient, scalable and automated techniques for differential pro-
gram analysis can greatly help software developers in several appli-
cations. Identifying security vulnerabilities gets more and more im-
portant in today’s ubiquitous computing environment. Fast and pre-
cise testing of software patches is crucial to make changes quickly
in evolving systems. The proposed research aims at finding these
efficient and scalable techniques that are applicable in a real-world
environment. Furthermore, the goal of this research is to automate
these techniques as much as possible, to increase their usability.

2 RELATEDWORK

State of the art techniques for worst-case complexity analysis focus
on either fuzzing techniques or symbolic execution based tech-
niques. SlowFuzz [20] is a fuzzer that prioritizes inputs that lead to
increased execution times, and hence, it aims at finding the worst-
case input in terms of program execution time. PerFuzz [13] is
another recent fuzzing approach that uses multidimensional feed-
back and maximizes the execution counts for each reached program
location, in order to identify distinct performance hot spots. Ap-
proaches like WISE [5] and SPF-WCA [14] use concolic execution
to learn a path policy that likely leads to a worst-case execution of
the program. Both perform exhaustive symbolic execution for large
enough, user-defined input sizes to obtain good policies, which
may not feasible in practice. A combination of fuzzing and sym-
bolic execution would avoid an exhaustive exploration and could
be fully automatic.

Typically a side-channel analysis accepts programs as secure if
the secret data can not be inferred by the side-channel measure-
ments that an attacker can make of the systems. This intuitive
property is called non-interference, which can be checked with, e.g.,
self-composition [4]. Instead of checking non-interference, which
might not hold for most realistic applications, the very recent ap-
proach Themis [7] checks a notion of 𝜖-bounded non-interference,
which accepts a program as secure as long as the cost differences
stays within the specified threshold. With the focus on verify-
ing the absence of timing channels, Blazer [2] departs from the
composition-based strategies and instead establish a novel decom-
position methodology. Both approaches, Blazer and Themis, are
based on a static analysis, which might lead to false alarms and
miss to generate concrete values that are crucial in reproducing and
fixing the found vulnerabilities. Other approaches [3, 18, 21] use
symbolic execution and constraint solving (in addition with model
counting) for quantifying side-channel leakage and for synthesis
of attacks. Although, they address the analysis of Java programs
they can not yet scale to large applications, due to the expensive
constraint manipulation. An efficient technique based on dynamic

analysis could provide concrete inputs to reproduce bugs and over-
come the imprecision, which is necessary for the application on
complex, real-world problems.

State-of-the-art regression analysis techniques aim at covering
the changed program statements by applying dynamic symbolic
execution. Directed Incremental Symbolic Execution (DiSE) [19, 27]
leverages static analysis to guide symbolic execution to changed
program locations only. Due to the fact that it executes only the
new version of the program, DiSE might lead to imprecise path
conditions, which can miss divergences between the old and the
new version. Shadow symbolic execution by Palikareva et al. [17]
applies on a changed-annotated program version, which combines
the old and the new program. Thus it can use the information
from both versions. They introduce a dynamic analysis technique,
which needs concrete test inputs to drive the symbolic execution.
They assume to have a test suite created by developers, from which
they can retrieve tests that touch the changed portion of the code.
Shadow symbolic execution might miss divergences that could ex-
pose regression errors if the concrete inputs lead to path conditions
that eliminate certain future program paths.

Several existent approaches try to combine fuzzing with sym-
bolic execution for test case generation. EvoSuite [8] is a test-case
generation tool for Java, based on evolutionary algorithms and
dynamic symbolic execution. SAGE (Scalable Automated Guided
Execution) [10] extends dynamic symbolic execution with a gener-
ational search that, instead of negating only the final condition of a
complete symbolic execution, negates all conditions on the path.
Mayhem [6], a symbolic execution engine with special focus on
security vulnerabilities in binaries, was combined with the Mur-
phy fuzzer and won the 2016 DARPA Cyber Grand Challenge [25].
Driller [24] is another promising tool that combines the AFL fuzzer
with the angr symbolic execution engine and that has achieved
similar results to Mayhem.

3 PROPOSED SOLUTIONS

3.1 Worst-Case Complexity Analysis

Figure 1 shows the overview of the technique Badger [15], which
was presented at the ISSTA’2018. Badger uses the combination of
the cost-guided fuzzer KelinicWCA and concolic execution based
on SPF (named SymExe). By running both techniques in parallel
while they exchange their results with eachother, it is possible to
leverage both strengths and overcome their single limitations. Ke-
linicWCA prioritizes costly paths by allowing AFL to not only
use inputs that increase coverage, but also inputs that lead to an
increased cost value (in time, memory or user-defined cost). SymExe
imports the generated inputs from the KelinicWCA and builds the
symbolic execution tree driven by the concrete values. Based on
heuristics it picks the n most promising nodes for further explo-
ration and generates inputs that then can be exported to the fuzzer
to further push it into deeper paths.

The most related work to this approach is SlowFuzz [20], which
is a fuzzer similar to KelinicWCA. Unfortunately, the approaches
cannot be directly compared because of different target program lan-
guages. Therefore, the evaluation for Badger uses similar subjects
as SlowFuzz and shows how all components (symbolic execution,
fuzzing, and the combination) perform in terms of the quality of
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Figure 1: Badger workflow representing how to combine

fuzzing and symbolic execution for WCA [15].

the obtained worst-case and the speed in finding it. As an excerpt
from the evaluation, Figure 2 shows the results for Insertion Sort
(N=64), for which the experiment was conducted for 5 hours and
the cost metric was the number of jumps in the Java bytecode.
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Figure 2: Results for Insertion Sort (N=64) [15].

3.2 Side-Channel Analysis

Side-channel vulnerabilities can be detected by maximizing the dif-
ference in observation between two program executions, for which
only the secret values are different and the public value remains the
same. A cost-guided fuzzer that can handle user-defined costs, simi-
lar to KelinicWCA [15], can be used to implement this idea by using
the difference in observed cost between two program executions
as user-defined value. As a first step, this idea was implemented in
a prototype and the evaluation, which includes comparison with
Blazer [2] and Themis [7], showed that it effectively can identify
side-channel vulnerabilities in real-world applications like Apache
FtpServer [1]. As next step this research plans to combine this
fuzzing approach with a similar symbolic execution approach used

in Badger. In contrast to Badger, which uses fixed input sizes, dif-
ferential fuzzing handles arbitrary input sizes up to a specified limit
because it depends on the fuzzing step and the dynamic fuzzing
driver to determine the current input size, which makes it necessary
to apply a more sophisticated symbolic execution approach. The
constructed symbolic execution tree has to handle multiple input
sizes at the same time, which can be realized by using a virtual
decision on the top, which determines the current size of the input.

3.3 Regression Analysis

For the worst-case complexity analysis it seems to be logical to
follow or search next to costly paths to find even more costly
paths. Unfortunately, the approach which works for WCA and
side-channel analysis does not need to work as well for regression
analysis. Regression analysis tries to find divergences in terms of
taking different branches in two program versions for the same
input. Quantifying these divergences is not as straightforward as
quantifying cost differences like execution time.

As fuzzing cost metrics this research proposes to investigate
two alternatives: (a) using cost defined by number of executed
statements (similar to the previous work on worst-case complexity
analysis and side-channel detection), for which a cost difference is
clear indicator for a regression, although it might miss regression
cases, and (b) using the difference in decision sequences, i.e. how
similar have been the decision made in both program versions.

As symbolic execution counterpart this work identified two op-
tions: (i) applying shadow symbolic execution [17] driven by the
concrete inputs imported from the fuzzer side, or (ii) applying (stan-
dard) symbolic execution similar to the side-channel analysis where
the difference is measured by applying metric (b), the difference
in decision sequences. Variant (i) would be based on a recent im-
plementation of shadow symbolic execution on top of SPF, called
𝑆ℎ𝑎𝑑𝑜𝑤 𝐽 𝑃𝐹 [16]. Shadow symbolic execution [17] needs concrete
values, which could be obtained from the fuzzing side. In addition to
be driven by concrete values, the symbolic execution in variant (i)
should also apply a full four-way forking to find the most promising
nodes for exploration and guide the fuzzing in deeper paths.

The overall workflow looks similar to the one by Badger [15]
(cf. Figure 1), although the analysis part needs to be replaced by
appropriate metrics to identify regressions.

4 PROGRESS IN RESEARCH

The work on worst-case complexity analysis is finished with the
publication of Badger [15] at the ISSTA’2018. The work on side-
channel analysis was started developing a fuzzing approach for the
identification of side-channel vulnerabilities. Additional work is
required to make usage of the full potential of fuzzing and symbolic
execution in this area. Furthermore, it is necessary to work on the
generation of concrete attacks based on a prior analysis based on
fuzzing and symbolic execution. The work on regression analysis
with fuzzing and symbolic execution was started by providing
𝑆ℎ𝑎𝑑𝑜𝑤 𝐽 𝑃𝐹 [16], an extension for SPF to perform shadow symbolic
execution at the JPF workshop 2017.
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5 PLANNED EVALUATION

In order to evaluate the proposed approaches this research plans to
quantitatively compare the resulting tools with existing approaches.
For the side-channel analysis the evaluation will include micro
benchmarks from existent work [2, 7] which consist of subjects
from literature and smaller examples, but also popular real-world ap-
plications like Tomcat, Jetty, Spring-Security and Apache FtpServer.
The evaluation will focus on comparing the identified cost differ-
ences as well as the needed analysis time. For the regression analysis
the previous work includes the evaluation on smaller subjects for
a preliminary assessment. It is necessary to identify more Java
subjects applicable for regression testing.

6 CONCLUSION

The purpose of this research is to identify effective metrics for dif-
ferential program analysis, which can be used as cost functions to
drive a combination of fuzzing and symbolic execution. Addition-
ally, this research aims to identify which types of dynamic symbolic
execution should be combined with fuzzing for the specific sub-
problems. The resulting tools will be made publicly available, in
order to support open science and to provide scalable solutions for
real-world applications.
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