
03.03.2025 – MBZUAI – Abu Dhabi

Automated Program Repair for Security

Prof. Dr. Yannic Noller
Software Quality group

im Menü über:
Start > Absatz >

Listenebene

Automated Program Repair for Security4

https://spectrum.ieee.org/aerospace/aviation/how-the-
boeing-737-max-disaster-looks-to-a-software-developer

https://www.computerworld.com/article/3412197/top-software-failures-in-recent-history

Failures because of Software Bugs

im Menü über:
Start > Absatz >

Listenebene

Automated Program Repair for Security5

Security Vulnerabilities

25k+ vulnerabilities in 2022

Microsoft reported 1292 vulnerabilities in 2022 1

Increase of backdoors in 2022 exploiting known
vulnerabilities 2

[1] Vulnerability and threat trends report, Skybox Security 2023
[2] Microsoft VulnerabilitiesReport, BeyondTrust, 2023
[3] X-Force Threat Intelligence Index 2023, IBM Security, February 24, 2023

Vulnerabilities remain unpatched for 55 months in NPM
eco-system and 94 months for RubyGems

40.86% patched after disclosure in python packages

im Menü über:
Start > Absatz >

Listenebene

This Talk: unified processes for software security repair

Automated Program Repair for Security7

§ Part 1: vulnerabilities that can be detected with sanitizers (e.g., during fuzzing)
§ sanitizer-driven concolic execution to compute repair constraint
§ taint/dependency analysis to identify potential fix locations
§ search-based inspired code mutations

§ Part 2: vulnerabilities that cannot be detected with current sanitizers
§ timing side-channel vulnerabilities (hyper-property)
§ provide feedback to the software developers (not just a monitoring solution) to

generate awareness for side channel risks arising from code patterns
§ allow partial fixing instead of complete elimination to allow a tradeoff between

security and performance (pattern-based repair)

Part 0
Background

im Menü über:
Start > Absatz >

Listenebene

Background – Fuzzing

Automated Program Repair for Security

§ term fuzzing was coined by Miller et al. in 1990, when they used a random testing tool
to investigate the reliability of UNIX tools

§ classification based on degree of program analysis
§ blackbox / greybox / whitebox fuzzing

§ classification based on generation technique
§ search-based fuzzing
§ generative fuzzing

§ state-of-the-art in vulnerability detection: coverage-based, mutational fuzzing

9

Miller, B. P., Fredriksen, L., & So, B. “An Empirical Study of the Reliability of UNIX Utilities”, Commun. ACM 1990.

im Menü über:
Start > Absatz >

Listenebene

Greybox Fuzzing

Automated Program Repair for Security10

initial seed files

1
queue

2
select &

trim input

3

mutate
repeatedly

4

mutated files that showed
(new) interesting behavior6

5 mutant selection by input evaluation for
the instrumented program P

parse
input

execute
program P

Check for new
coverage or
program crashes
or timeouts

fuzzing driver

output

program
coverage

im Menü über:
Start > Absatz >

Listenebene

Background – Sanitizer

Automated Program Repair for Security

§ Key idea: instrument the program to make security issues visible/observable
§ A sanitizer detects memory corruption, undefined behavior, and security vulnerabilities

during runtime, which makes them useful for fuzzing.
§ Common Sanitizers:

§ AddressSanitizer (ASan): Detects memory errors like buffer under/overflows, use-
after-free

§ UndefinedBehaviorSanitizer (UBSan): Flags undefined behavior (e.g., signed integer
overflows, use of uninitialized memory).

§ MemorySanitizer (MSan): Identifies use of uninitialized memory.
§ ThreadSanitizer (TSan): Detects data races and thread synchronization issues.
§ LeakSanitizer (LSan): Reports memory leaks.

11

im Menü über:
Start > Absatz >

Listenebene

Symbolic Execution
§ introduced by King[1] and Clarke[2]

§ analysis of programs with unspecified inputs, i.e. execute a program with symbolic
inputs

§ symbolic states represent sets of concrete states
§ for each path, build a path condition

§ condition on inputs – for the execution to follow that path
§ check path condition satisfiability – explore only feasible paths

§ symbolic state
§ symbolic values / expressions for variables
§ path condition
§ instruction pointer

Automated Program Repair for Security12

[1] James C. King. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (July 1976), 385-394.
[2] L. A. Clarke, "A System to Generate Test Data and Symbolically Execute Programs," in IEEE Transactions
on Software Engineering, vol. SE-2, no. 3, pp. 215-222, Sept. 1976.

im Menü über:
Start > Absatz >

Listenebene

Example: concrete execution

Automated Program Repair for Security13

int x, y;
if (x > y) {
 x = x + y;
 y = x – y;
 x = x – y;
 if (x > y)
 assert false;
}

x = 1, y = 0

code that swaps 2 integers concrete execution path

x > y ? true

x = 1 + 0 = 1

y = 1 – 0 = 1

x = 1 – 1 = 0

0 > 1 ? false

END

im Menü über:
Start > Absatz >

Listenebene

Example: symbolic execution

Automated Program Repair for Security14

int x, y;
if (x > y) {
 x = x + y;
 y = x – y;
 x = x – y;
 if (x > y)
 assert false;
}

[True] x=!, y="
code that swaps 2 integers

symbolic execution tree

[True] !>"?

[!≤"] END [!>"] x=!+"

[!>"] y=!+"–"=!

[!>"] x=!+"-!="

[!>"] ">! ?

[!>"ᴧ"≤!] END [!>"ᴧ">!] assert false

True

True

False

False

unsatisfiable !!!
Hint: solve PCs to obtain test inputs

path condition

im Menü über:
Start > Absatz >

Listenebene

Example: concolic execution

Automated Program Repair for Security15

int x, y;
if (x > y) {
 x = x + y;
 y = x – y;
 x = x – y;
 if (x > y)
 assert false;
}

x = 1, y = 0

code that swaps 2 integers concrete execution path

x > y ? true

x = 1 + 0 = 1

y = 1 – 0 = 1

x = 1 – 1 = 0

0 > 1 ? false

END

symbolic information

[True] x= !, y= "

[!>"] x= !+", y= "

[!>"] x= !+", y=!

[!>"] x=", y=!

[!>"ᴧ"≤!] x=", y=!

[!>"] x= !, y= "

[!>"ᴧ"≤!] x=", y=!

follow the concrete execution path
while still collecting the information
about the symbolic state

im Menü über:
Start > Absatz >

Listenebene

Automated Program Repair (APR)

Automated Program Repair for Security18

APR

localize generate validate

bug report

test suite

buggy
program

fixed
programs

im Menü über:
Start > Absatz >

Listenebene

Automated Program Repair for Security19

APR Approaches

https://nus-apr.github.io/

State-of-the-art in Program Repair: Pictorial view derived from Communications of the ACM article 2019.

im Menü über:
Start > Absatz >

Listenebene

Security Vulnerability Repair

Automated Program Repair for Security22

only one failing test-case available

test-oracle is crash-freedom many plausible patches

weak specification

if (((1 > 0) && (1 > 0))) exit(1);

if (((! (image->res_unit == 3)) && (! (image->res_unit == 3)))) return;

Examples of over-fitting patches:

if ((! (((! ((- 4) == 0))) && ((! (0 == 0)) || (! (64 == 0)))))) break;

if ((! ((log_level && (! ((- 4) == 0))) && log_level))) exit(0);

im Menü über:
Start > Absatz >

Listenebene

Automated Program Repair for Security23

im Menü über:
Start > Absatz >

Listenebene

Greybox Fuzzing

Automated Program Repair for Security10

initial seed files
1

queue
2

select &
trim input

3

mutate
repeatedly

4

mutated files that showed
(new) interesting behavior6

5 mutant selection by input evaluation for
the instrumented program P

parse
input

execute
program P

Check for new
coverage or
program crashes
or timeouts

fuzzing driver

output

program
coverage

im Menü über:
Start > Absatz >

Listenebene

Example: symbolic execution

Automated Program Repair for Security14

int x, y;
if (x > y) {
 x = x + y;
 y = x – y;
 x = x – y;
 if (x > y)
 assert false;
}

[True] x=!, y="
code that swaps 2 integers

symbolic execution tree

[True] !>"?

[!≤"] END [!>"] x=!+"

[!>"] y=!+"–"=!

[!>"] x=!+"-!="

[!>"] ">! ?

[!>"ᴧ"≤!] END [!>"ᴧ">!] assert false

True

True

False

False

unsatisfiable !!!
Hint: solve PCs to obtain test inputs

path condition

im Menü über:
Start > Absatz >

Listenebene

Automated Program Repair (APR)

Automated Program Repair for Security18

APR

localize generate validate

bug report

test suite

buggy
program

fixed
programs

im Menü über:
Start > Absatz >

Listenebene

Security Vulnerability Repair

Automated Program Repair for Security22

only one failing test-case available

test-oracle is crash-freedom many plausible patches

weak specification

if (((1 > 0) && (1 > 0))) exit(1);

if (((! (image->res_unit == 3)) && (! (image->res_unit == 3)))) return;

Examples of over-fitting patches:

if ((! (((! ((- 4) == 0))) && ((! (0 == 0)) || (! (64 == 0)))))) break;

if ((! ((log_level && (! ((- 4) == 0))) && log_level))) exit(0);

Part 1
Security Vulnerability Repair via
Concolic Execution and Code
Mutations

im Menü über:
Start > Absatz >

Listenebene

§ using sanitizer-guided
concolic execution,
specification inference, and
search techniques

§ avoids just disabling the error
manifestation

§ no user-provided property
needed

§ tool: CrashRepair

Automated Program Repair for Security25

R. Shariffdeen, C. S. Timperley, Y. Noller, C. Le Goues, and A. Roychoudhury. 2024. Vulnerability Repair via Concolic
Execution and Code Mutations. ACM Trans. Softw. Eng. Methodol. https://doi.org/10.1145/3707454

Vulnerability Repair via
Concolic Execution and Code Mutations

RIDWAN SHARIFFDEEN, National University of Singapore, Singapore
CHRISTOPHER S. TIMPERLEY, Carnegie Mellon University, USA
YANNIC NOLLER, Ruhr University Bochum, Germany
CLAIRE LE GOUES, Carnegie Mellon University, USA
ABHIK ROYCHOUDHURY, National University of Singapore, Singapore

Security vulnerabilities detected via techniques like greybox fuzzing are often !xed with a signi!cant time lag.
This increases the exposure of the software to vulnerabilities. Automated !xing of vulnerabilities where a tool
can generate !x suggestions is thus of value. In this work, we present such a tool, called C!"#$R%&"’!, to
automatically generate !x suggestions using concolic execution, speci!cation inference, and search techniques.
Our approach avoids generating !x suggestions merely at the crash location because such !xes often disable
the manifestation of the error instead of !xing the error. Instead, based on sanitizer-guided concolic execution,
we infer desired constraints at speci!c program locations and then opportunistically search for code mutations
that help respect those constraints. Our technique only requires a single detected vulnerability or exploit as
input; it does not require any user-provided properties. Evaluation results on a wide variety of CVEs in the
VulnLoc benchmark, show C!"#$R%&"’! achieves greater e"cacy than state-of-the-art vulnerability repair
tools like Senx. The repairs suggested come in the form of a ranked set of patches at di#erent locations, and
we show that on most occasions, the desired !x is among the top-3 !xes reported by C!"#$R%&"’!.

ACM Reference Format:
Ridwan Shari#deen, Christopher S. Timperley, Yannic Noller, Claire Le Goues, and Abhik Roychoudhury.
2024. Vulnerability Repair via Concolic Execution and Code Mutations. 1, 1 (November 2024), 27 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The reliance on open-source software makes our infrastructures prone to the security vulnerabilities
of such software. Today, there exist signi!cant challenges in !nding and !xing vulnerabilities. First of
all, the software typically needs to undergo a campaign of greybox fuzzing to !nd inputs witnessing
the vulnerabilities. Subsequently, even when the vulnerabilities are reported and constructed as
CVEs, theymay remain unpatched for long [12, 20]. This leads to signi!cant exposure of the software
to vulnerabilities. In this work, we take a step towards reducing the lag between detection and
repair of security vulnerabilities. In principle, this could be achieved by merging the !xing process
as part of a fuzzing campaign. However, naively attaching an automated !xing process as part of
the fuzzing campaign would insert !xes based on a set of tests, which can introduce errors visible
in other (unavailable) tests. This corresponds to the well-known problem of producing over!tting

Authors’ addresses: Ridwan Shari#deen, National University of Singapore, Singapore, ridwan@comp.nus.edu.sg; Christopher
S. Timperley, Carnegie Mellon University, USA, ctimperley@cmu.edu; Yannic Noller, Ruhr University Bochum, Germany,
yannic.noller@acm.org; Claire Le Goues, Carnegie Mellon University, USA, clegoues@cs.cmu.edu; Abhik Roychoudhury,
National University of Singapore, Singapore, abhik@comp.nus.edu.sg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro!t or commercial advantage and that copies bear this notice and
the full citation on the !rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci!c permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Association for Computing Machinery.
XXXX-XXXX/2024/11-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: November 2024.

im Menü über:
Start > Absatz >

Listenebene

CrashRepair: Workflow

Automated Program Repair for Security32

§ Fix Localization and Specification Inference using Semantic Analysis
§ generate a crash-free constraint for the program
§ identify fix locations using program dependencies

§ Constraint guided Code Mutations
§ finds correct error-handling procedures
§ constraint guided mutators to efficiently navigate the search space

im Menü über:
Start > Absatz >

Listenebene

CrashRepair: Key Idea

Automated Program Repair for Security33

Crash Location

Li

Lj

CFC

program
trace

CFCj

CFCi

Code Mutation plausible patches

im Menü über:
Start > Absatz >

Listenebene

Illustrative Example

Automated Program Repair for Security34

TIFF
Image

LibTiff
v4.0.7

CVE-2016-10092

FILE: libtiff/tif_unix.c:340

void
_TIFFmemcpy(void* d, const void* s, tmsize_t c)
{

memcpy(d, s, (size_t) c);
}

===
==173185==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x6210000000ff at
pc 0x0000004d9dcc bp 0x7fff071360f0 sp 0x7fff071358a0
WRITE of size 1 at 0x6210000000ff thread T0

#0 0x4d9dcb in __asan_memcpy /tmp/llvm/compiler-rt/lib/asan/asan_interceptors_memintrinsics.cc:23
#1 0x5e8984 in _TIFFmemcpy /data/vulnloc/libtiff/CVE-2016-10092/src/libtiff/tif_unix.c:340:2
#2 0x5eacd0 in DumpModeDecode /data/vulnloc/libtiff/CVE-2016-10092/src/libtiff/tif_dumpmode.c:103:3
#3 0x5ce351 in TIFFReadEncodedStrip /data/vulnloc/libtiff/CVE-2016-10092/src/libtiff/tif_read.c:2639:6
#4 0x532b10 in readContigStripsIntoBuffer /data/vulnloc/libtiff/CVE-2016-10092/src/tools/tiffcrop.c:8408:30
#5 0x5203e5 in loadImage /data/vulnloc/libtiff/CVE-2016-10092/src/tools/tiffcrop.c:10756:13
#6 0x51a85f in main /data/vulnloc/libtiff/CVE-2016-10092/src/tools/tiffcrop.c:7064:11
#7 0x7f70cbb90c86 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21c86)
#8 0x41b1d9 in _start (/data/vulnloc/libtiff/CVE-2016-10092/src/tools/tiffcrop+0x41b1d9)

detected by using AFL

§ heap-based buffer overflow
§ allows remote attackers to

have unspecified impact
via a crafted image

im Menü über:
Start > Absatz >

Listenebene

Illustrative Example

Automated Program Repair for Security35

CVE-2016-10092

in the failing test case:
§ the bytes_read gets assigned to a

negative number, which later, in line 12,
§ causes a buffer overflow triggered in a

different program location
§ when accessing the pointer bufp

im Menü über:
Start > Absatz >

Listenebene

Specification Inference

Automated Program Repair for Security36

Concolic
Execution Constraint Generator

crash
dump

Violated Safety Property Stack Trace Symbolic Store

Memory Write Error tif_unix.c:340:2 bv231727104

CFC: ((base @var(pointer, d)) <= @var(pointer, d))

powered by concolic
execution with KLEE

im Menü über:
Start > Absatz >

Listenebene

Specification Inference

Automated Program Repair for Security37

CFC: ((base @var(pointer, d)) <= @var(pointer, d))

§ a security property capturing a memory safety property for the pointer variable d
§ the memory address accessed by the pointer should be within the bounds of the

memory allocation
§ in this case, the violation is on the lower bound, which is the base address of the

memory region
§ variable d is a pointer used by the crashing function _TIFFmemcpy located in the

source file libtiff/tif_unix.c
§ @var(pointer, d) = the current address captured by the pointer d
§ (base @var(pointer, d)) = base address for the pointer captured by the program

§ base address = starting address for allocated memory region accessed with d

CFC = Crash Free Constraint

im Menü über:
Start > Absatz >

Listenebene

Fix Localization

Automated Program Repair for Security38

Concolic
Execution Constraint Generator

CFC: ((base @var(pointer, d)) <= @var(pointer, d))

Fix Localizationtaint flow

CFC Taint Sources Filter Trace

L0: DumpModeDecode, /data/vulnloc/libtiff/CVE-2016-
10092/src/libtiff/tif_dumpmode.c:103:36
L6: readContigStripsIntoBuffer, /data/vulnloc/libtiff/CVE-2016-
10092/src/tools/tiffcrop.c:8420:22

Fix Locations

crash
dump

im Menü über:
Start > Absatz >

Listenebene

Constraint Translation

Automated Program Repair for Security39

Concolic
Execution Constraint Generator

Fix Localization

Constraint Translation

fix locs

CFC

Fix Loc Program Expressions Symbolic Expression SMT Solver

tiffcrop.c:
8420:22

bufp
bufp + buf

γ
α + β

Equivalent
Not Equivalent

L0: (@var(pointer, crepair_base(buf)) <= @var(pointer, buf))
L6: (@var(pointer, bufp) <= (@var(pointer, bufp) + (@result(integer))))

Translated
Constraints

taint flow

à L6: 0 <= (@result(integer))

crash
dump

Can we map the
expressions in the
CFC to local variables
in the fix location?

im Menü über:
Start > Absatz >

Listenebene

Code Mutation

Automated Program Repair for Security40

Concolic
Execution Constraint Generator

Fix Localization

Constraint Translation

Patch Generator

fix constraints

Fix Loc Program States

tiffcrop.c:
8420:22

bufp: bv231727104
buf: bv231727101

Repair Constraint

0 <= (@result(integer))

Repair Operator

ExpressionMutation
GuardStatement

candidate
patches

taint flow fix locs

CFC

crash
dump

im Menü über:
Start > Absatz >

Listenebene

Illustrative Example

Automated Program Repair for Security41

CVE-2016-10092

TIFF
Image

LibTiff
v4.0.7

1: tiffcrop.c:8405: if (!((buf <= bufp))) { return -1; }
2: tiffcrop.c:8405: if (!((buf <= bufp))) { return -1.0; }
3: tiffcrop.c:8405: if (!((buf <= bufp))) { return 1; }
4: tiffcrop.c:8405: if (!((buf <= bufp))) { break; }
5: if ((buf <= bufp)) { bytes_read = TIFFReadEncodedStrip (in,
strip, bufp, -1); }
6: tiffcrop.c:8417: bufp += *bufp;
7: tiffcrop.c:8417: bufp += stripsize;

Plausible Patches

Identical developer patch is ranked in top-10

Same patch also fixes CVE-2016-10272 which is another buffer overflow

im Menü über:
Start > Absatz >

Listenebene

CrashRepair: Overview

Automated Program Repair for Security42

Concolic
Execution Constraint Generator

Fix Localization

Constraint Translation

Patch Generator

Patch ValidatorConcentrated
Fuzzing enriched tests

crash
dump

taint flow fix locs

CFC

fix constraints

candidate patches

plausible patches

im Menü über:
Start > Absatz >

Listenebene

Comparison with SOTA

Automated Program Repair for Security46

Tool # Plausible # Correct

CrashRepair 29 19

SenX 12 3

ExtractFix 12 5

VulnFix 17 9

CPR 35 9
CrashRepair is more effective than existing
state-of-the-art for vulnerability repair

CrashRepair generates more plausible
patches than SenX, ExtractFix and VulnFix

CrashRepair generates a plausible patch for
29 instances without additional information

evaluated on 41 subjects in VulnLoc benchmark with 1hr timeout

im Menü über:
Start > Absatz >

Listenebene

Comparison with SOTA

Automated Program Repair for Security47

im Menü über:
Start > Absatz >

Listenebene

Limitations

Automated Program Repair for Security

§ Limitations in KLEE
§ Does not support floating points, longjmps etc
§ Limitations in detecting memory overflows (i.e. environment modeling)

§ Does not handle inputs which leads to large symbolic constraints which will timeout the
concolic execution

§ Fix-ingredients are derived from observed program expressions

48

im Menü über:
Start > Absatz >

Listenebene

Summary: CrashRepair

Automated Program Repair for Security

§ Combined semantic analysis with code mutation to find high-quality patches for
security vulnerabilities

§ Program dependency based fix localization can effectively identify fix locations closer
to the developer fix location

§ Constraint-guided search finds high-quality patches compared to existing state-of-
the-art techniques

49

Part 2
Detection, Quantification, Repair
of Side-Channel Vulnerabilities

im Menü über:
Start > Absatz >

Listenebene

Potential Side-Channel Leakages

Automated Program Repair for Security51

By David B. Gleason from Chicago, IL - The Pentagon, CC BY-SA 2.0,
https://commons.wikimedia.org/w/index.php?curid=4891272

im Menü über:
Start > Absatz >

Listenebene

Side-Channel Analysis

Automated Program Repair for Security52

q leakage of secret data
q software side-channels
q observables:

§ execution time
§ memory consumption
§ response size
§ network traffic
§ …

Where do we find them?
q application code, e.g., Apache Tomcat, FtpServer, …
q security libraries, e.g., JDK, spring security, Bouncy Castle, …

0 boolean pwcheck_unsafe (byte[] pub, byte[] sec) {
1 if (pub.length != sec.length) {
2 return false;
3 }
4 for (int i = 0; i < pub.length; i++) {
5 if (pub[i] != sec[i]) {
6 return false;
7 }
8 }
9 return true;
10 }

conditional early return
causes leakage

im Menü über:
Start > Absatz >

Listenebene

Differential Software Testing
➥ identify behavioral differences

Automated Program Repair for Security53

input1

program P

input2

program P

2

=?
behavior1

behavior2

x

y
input

program P

program P’

1

=?
behavior1

behavior2

x

im Menü über:
Start > Absatz >

Listenebene

Differential Software Testing
➥ identify behavioral differences

Automated Program Repair for Security54

input1

program P

input2

program P

2

=?
behavior1

behavior2

x

y
input

program P

program P’

1

=?
behavior1

behavior2

x

§ for the same program with two
different inputs
➥ security, reliability

§ for example,
§ Worst-Case Complexity Analysis
§ Side-Channel Analysis
§ Robustness Analysis of Neural

Network

im Menü über:
Start > Absatz >

Listenebene

Path to Side-Channel Repair

Automated Program Repair for Security55

Detection of
side-channel

vulnerabilities*

Quantification
of side-channel
vulnerabilities

Repair of side-
channel

vulnerabilities

Developing
secure
software

Decision making in
(Secure) Software

Engineering

requires drives

enables

supports

Reduce vulnerability and
support developer

DifFuzz
(ICSE’19)

QFuzz
(ISSTA’21)

Pendulum
(TOSEM’24)

* initially motivated by the DARPA Space/Time Analysis for Cybersecurity (STAC) program

im Menü über:
Start > Absatz >

Listenebene

Path to Side-Channel Repair

Automated Program Repair for Security56

Detection of
side-channel
vulnerabilities

Quantification
of side-channel
vulnerabilities

Repair of side-
channel

vulnerabilities

Developing
secure
software

Decision making in
(Secure) Software

Engineering

requires drives

enables

supports

Reduce vulnerability and
support developer

DifFuzz
(ICSE’19)

QFuzz
(ISSTA’21)

Pendulum
(TOSEM’24)

im Menü über:
Start > Absatz >

Listenebene

§ uses differential fuzzing to
automatically find side-channel
vulnerabilities

§ outperforms static analysis
techniques

§ applies on system level
§ cannot tell how severe a

vulnerability might be

Automated Program Repair for Security57

S. Nilizadeh, Y. Noller and C. S. Pasareanu, "DifFuzz: Differential Fuzzing for Side-Channel Analysis”, ICSE’2019,
https://doi.org/10.1109/ICSE.2019.00034

https://doi.org/10.1109/ICSE.2019.00034

im Menü über:
Start > Absatz >

Listenebene

Side-Channel Analysis (continued)

§ secure if the secret data can not be inferred by an attacker through their observations of
the system (aka non-interference)

§ can be solved by self-composition [Barthe2004]

Automated Program Repair for Security58

Barthe, G., D’Argenio, P. R., & Rezk, T. “Secure information flow by self-composition”, IEEE Computer Security
Foundations Workshop, 2004.

! " #$%, '(!# = !(" #$%, '(!$)
∀	#$%, '(!#, '(!$: 	! " #$%, '(!# = !(" #$%, '(!$)

! " #$%, '(!# 	 !(" #$%, '(!$)
! " #$%, '(!#
" #$%, '(!#program execution

cost observation

two secret values

equivalence

im Menü über:
Start > Absatz >

Listenebene

Fuzzing for Side-Channels (DifFuzz, ICSE‘19)

§ key aspect: search for path, for which side-channel observation differs because of
secret values

Automated Program Repair for Security59

initial seed files

1
queue

2
mutate

repeatedly
4

mutated files that showed
(new) interesting behavior6

parse
input

5 mutant selection by input evaluation for
the instrumented program P

P[s1, y] Check:
new cost
highscore or
improved
coverage

compute
cost

difference
P[s2, y]

a) cost
difference !

b) program
 coverage

c(s1, y),
cov1

c(s2, y),
cov2

! = # $ %&',)*#! − # $ %&',)*#"

select &
trim input

3

maximize
!"#, %&'! , %&'"

im Menü über:
Start > Absatz >

Listenebene

Automated Program Repair for Security60

Example Results
Initial Input:

secret1 = [72, 101, 108, 108, 111, 32, 67]
secret2 = [97, 114, 110, 101, 103, 105, 101]
public1 = [32, 77, 101, 108, 108, 111, 110]

secret1 = [72, 77, -16, -66, -48, -48, -48, -48, -28, 0, 100, 0, 0, 0, 0, -48]
secret2 = [-48, -4, -48, 7, 17, 0, -24, -48, -48, 16, -48, -3, 108, 72, 32, 0]
public1 = [-48, -4, -48, 7, 17, 0, -24, -48, -48, 16, -48, -3, 108, 72, 32, 0]

costDiff > 0 after ~ 5 sec

Input with highscore costDiff = 47 after ~ 69 sec
(maximum length = 16 bytes):

costDiff = 0

0 boolean pwcheck_unsafe (byte[] pub, byte[] sec) {
1 if (pub.length != sec.length) {
2 return false;
3 }
4 for (int i = 0; i < pub.length; i++) {
5 if (pub[i] != sec[i]) {
6 return false;
7 }
8 }
9 return true;
10 }

im Menü über:
Start > Absatz >

Listenebene
Is there a vulnerability?

⇔
How much information can be leaked?

Automated Program Repair for Security61

im Menü über:
Start > Absatz >

Listenebene

Path to Side-Channel Repair

Automated Program Repair for Security62

Detection of
side-channel
vulnerabilities

Quantification
of side-channel
vulnerabilities

Repair of side-
channel

vulnerabilities

Developing
secure
software

Decision making in
(Secure) Software

Engineering

requires drives

enables

supports

Reduce vulnerability and
support developer

DifFuzz
(ICSE’19)

QFuzz
(ISSTA’21)

Pendulum
(TOSEM’24)

im Menü über:
Start > Absatz >

Listenebene

§ uses greybox fuzzing to
quantitatively evaluate the
strength of side channels

§ focuses on min entropy
§ explores two partitioning

algorithms that try to maximize
the number of distinguishable
observations

§ cannot localize the vulnerability
§ published at ISSTA‘2021

Automated Program Repair for Security63

Yannic Noller and Saeid Tizpaz-Niari, “QFuzz: quantitative fuzzing for side channels”, ISSTA 2021
https://doi.org/10.1145/3460319.3464817

https://doi.org/10.1145/3460319.3464817

im Menü über:
Start > Absatz >

Listenebene

Timing SC Vulnerability: An Example

Automated Program Repair for Security64

“fxxxxx” 1ms

“sxxxxx” 2ms

“sexxxx” 3ms

“sesame” 7ms

log in with
“sesame”

im Menü über:
Start > Absatz >

Listenebene

Timing SC Vulnerability: Quantification

Automated Program Repair for Security65

!# "#

!$ "$

!% "%

!& "&

public input
#

im Menü über:
Start > Absatz >

Listenebene

Threat Model

Automated Program Repair for Security66

§ We adapt our threat model from a chosen-message attack [CCS‘07]

§ i.e., an adversary picks an ideal public input to compromise secret inputs in one trial
§ Offline: The attacker, who has access to the source code, can sample secret and

public inputs on their local machine arbitrarily many times and construct an ideal public
input that partitions the secret into many classes of timing observations.

§ Online: The attacker queries the target application with the best guess, observes side
channels, and maps the observation to a partition of secret inputs.

Boris Köpf and David Basin. 2007. An Information-Theoretic Model for Adaptive Side-Channel Attacks. CCS ’07.
https://doi.org/10.1145/1315245.1315282

https://doi.org/10.1145/1315245.1315282

im Menü über:
Start > Absatz >

Listenebene

Quantification (QFuzz, ISSTA‘21)

Automated Program Repair for Security67

Threat Model
Attacker can pick an ideal public
input to compromise the secret value
or some properties of it in one try.

Information Leakage: min-entropy [Smith2009]
Assuming that the program P is deterministic and the
distribution over secret input Σ is uniform, then the
information leakage can be characterized !"#($∗	(ε=0).

maximum number of
classes in the cost
observations

'()! *"#$∗

Problem Statementε ≥ 0

Find set of secret values Σ and public
value y* that characterize the
maximum number of observation
classes with the highest distance '.

How to identify
such inputs?

1

How to characterize
observation classes?

2

im Menü über:
Start > Absatz >

Listenebene

Quantification (QFuzz, ISSTA‘21)

Automated Program Repair for Security68

QFuzz: Workflow
Research Problem State of the Art Our Solution Example Evaluation Summary

yannic.noller@acm.org
saeid@utep.edu 8QFuzz: Quantitative Fuzzing for Side Channels

initial seed files

1
queue

2
trim input

3

mutate
repeatedly

4

mutated files that showed
(new) interesting behavior6

parse
input

5 mutant selection by input evaluation for
the instrumented program P

P[s1, y]
check for
improved
partitioning
or coverage

compute
partitions

P[s2, y]

P[sk, y]

a) #partitions k
b) minimum

distance !

c) program
coverage

…

c(s1, y),
cov1

c(s2, y),
cov2

c(s3, y),
covk

fuzzing driver

!"#!!,…,!",$ $"%&%(()&, + , … , ()', +) + (1 − 1().& ∗ ,)

Maximize number
of partitions

Maximize the difference
between the partitions

How to identify
such inputs?

1

Fuzzing Partioning
Algorithm

c(s1, y)
c(s2, y)
c(s3, y)
c(s4, y)

p2

p1

KDynamic &
Greedy

How to characterize
observation classes?

2

im Menü über:
Start > Absatz >

Listenebene

QFuzz: Workflow

Automated Program Repair for Security69

initial seed files

1
queue

2
trim input

3

mutate
repeatedly

4

mutated files that showed
(new) interesting behavior6

parse
input

5 mutant selection by input evaluation for
the instrumented program P

P[s1, y]
check for
improved
partitioning
or coverage

compute
partitions

P[s2, y]

P[sK, y]

a) #partitions k
b) minimum

distance !

c) program
 coverage…

c(s1, y),
cov1

c(s2, y),
cov2

c(s3, y),
covk

fuzzing driver

%&'"%,…,"&,% (&)*&(, -', / , … , , -(, /) + (1	 −	6)*.'	∗	.)

Maximize number
of partitions

Maximize the difference
between the partitions

im Menü über:
Start > Absatz >

Listenebene

Example (K=100, ε=1, length=16, count=bytecode-instruction)

Automated Program Repair for Security70

QFuzz: �antitative Fuzzing for Side Channels ISSTA ’21, July 11–17, 2021, Virtual, Denmark

stringEquals (Original Jetty, v1)

boolean stringEquals(String s1, String s2) { .
if (s1 == s2)
return true;

if (s1 == null || s2 == null ||
s1.length () != s2.length ())

return false;
for (int i = 0; i < s1.length (); ++i)
if (s1.charAt(i) != s2.charAt(i))
return false;

return true;
}

stringEquals (Current Jetty, v4)

boolean stringEquals(String s1, String s2) {
if (s1 == s2) return true;
if (s1 == null || s2 == null)
return false;

boolean result = true;
int l1 = s1.length ();
int l2 = s2.length ();
for (int i = 0; i < l2; ++i)
result &= s1.charAt(i%l1) == s2.charAt(i));

return result && l1 == l2;
}

stringEquals (Safe Jetty, v5)

boolean stringEquals(String s1, String s2) { .
if (s1 == s2) return true;
if (s1 == null || s2 == null)
return false;

int l1 = s1.length ();
int l2 = s2.length ();
if(l2 == 0){ return l1 == 0}
int result |= l1 - l2;
for (int i = 0; i < l2; ++i){
int r = ((i - l1) >>> 31) * i;
result |= s1.charAt(r) ^ s2.charAt(i);

}
return result == 0;

}

Equals (Unsafe Spring-Security)

boolean Equals(String s1, String s2) { .
if (s1 == null || s2 == null)
return false;

byte[] s1B = s1.getBytes(�UTF -8�);
byte[] s2B = s2.getBytes(�UTF -8�);
int len1 = s1B.length;
int len2 = s2B.length;
if (len1 != len2)
return false;

int result = 0;
for (int i = 0; i < len2; i++)
result |= s1B[i] ^ s2B[i];

return result == 0;
}

Figure 2: String equality in Eclipse Jetty (s1 secret, s2 public). Top-Left: The code snippet is the original implementation for
the secret comparison that contains a strong side channel. Top-Right: The code is the current version that has been developed
to �x the side channel, but still leaks some information. Bottom-Left: The code snippet is a proposed safe implementation.
Bottom-Right: String equality in Spring-Security that leak whether the length of strings is matching.

Finally, we consider an unsafe variant of password matching from
Spring-Security as shown in Figure 2 (bottom-right). We study
the feasibility of side channels in these four implementations and
apply QF��� to estimate the amount of information leaks using the
number of partitions.

Example Parameters. We consider = 100 and n = 1 as default
con�guration parameters. We set the length of the secret and the
public guess to be the same and �xed to 16 characters. We run
QF��� 30 times on each variant, where each run is for 30 minutes.
We report the maximum number of partitions (:) and the cost
di�erences in bytecode between two closest partitions (X). The
detailed results for can be found in Table 1 and Table 3.

First Variant of Je�y. Figure 2 (top-left) shows the �rst variant,
for which QF��� discovers 17 classes of observations (: = 17).
Each partition is at least 3 bytecodes far from any other partition
(X = 3). Since we �x the length, the number of partitions re�ect
side-channel observations related to the content of secret inputs.
We �nd that each partition shows the number of characters in
the pre�x of secrets that match with the guess. Since there are 16
characters, there can be 17 partitions ranging from no pre�x match
to all 16 characters match. This implementation is known to be
vulnerable to adaptive side channels where an attacker can use the

cost observations to compromise a pre�x of a secret password in
each step of the attack. The outcome of QF��� indirecly indicates
the feasibility of adaptive attacks, while they are not the main focus.

Second Variant of Je�y (current implementation). We consider the
current implementation in Jetty as shown in Figure 2 (top-right).
In this case, QF��� detects 9 partitions where each partition is
at least 1 bytecode far from any others. This analysis shows that
the �x improved the security and reduced the strength of leaks as
compared to the �rst variant. SinceQF��� foundmultiple partitions,
however, we conclude that this variant is not completely safe. To
understand the issue, we analyze the corresponding instructions
generated by J��� Virtual Machine (JVM). The analysis shows
the equal operator (“==”) in the loop body is optimized by JVM
and translated to a conditional jump instruction (if_icmpne) if the
comparison is not successful and an unconditional jump instruction
otherwise. This translation introduces an imbalance comparison
where the unconditional jump includes a single extra bytecode
instruction as compared to the conditional jump.With 16 characters,
the bytecode di�erences, range from 0 to 16, are partitioned into 9
classes with n = 1.

Third Variant of Je�y (OpenJDK [28]). We take a password matching
algorithm from OpenJDK [28] that explicitly uses “xor” operation

K=17
7=3

K=9
7 =1

K=1 K=2
7 =149

only leaks
existence of

special character
⚠

DifFuzz

im Menü über:
Start > Absatz >

Listenebene
How much information can be leaked?

⇔
How can we fix the issue?

Automated Program Repair for Security71

im Menü über:
Start > Absatz >

Listenebene

Path to Side-Channel Repair

Automated Program Repair for Security72

Detection of
side-channel
vulnerabilities

Quantification
of side-channel
vulnerabilities

Repair of side-
channel

vulnerabilities

Developing
secure
software

Decision making in
(Secure) Software

Engineering

requires drives

enables

supports

Reduce vulnerability and
support developer

DifFuzz
(ICSE’19)

QFuzz
(ISSTA’21)

Pendulum
(TOSEM’24)

im Menü über:
Start > Absatz >

Listenebene

§ uses collected observations
from QFuzz to localize the
vulnerability

§ applies (safe) operators to
transform the source code

§ can introduce side-effects

§ published in TOSEM 2024

Automated Program Repair for Security73

Haifeng Ruan, Yannic Noller, Saeid Tizpaz-Niari, Sudipta Chattopadhyay, and Abhik Roychoudhury. “Timing Side-
Channel Mitigation via Automated Program Repair”, TOSEM 2024. https://doi.org/10.1145/3678169

https://doi.org/10.1145/3678169

im Menü über:
Start > Absatz >

Listenebene

Automated Program Repair for Security74

Pendulum – Repair Workflow (TOSEM‘24)

im Menü über:
Start > Absatz >

Listenebene

Automated Program Repair for Security75

Fix Localization (Basic Block)
Compare traces to find where they diverge

a

e

b

c

d

f

EXIT

g

h

diverge at a

converge at f (post-dominator of a)

P(y,s1): a b c b c d f g EXIT
P(y,s2):a e f g EXIT

im Menü über:
Start > Absatz >

Listenebene

Automated Program Repair for Security76

Fix Localization (Basic Block)
Compare traces to find where they diverge

a

e

b

c

d

f

EXIT

g

h

P(y,s1): a b c b c d f g EXIT
P(y,s3): a b c d f h EXIT

diverge at c

converge at d
(post-dominator of c)

diverge at f

converge at EXIT
(post-dominator of f)

im Menü über:
Start > Absatz >

Listenebene

Automated Program Repair for Security77

Fix Localization (Source Code)
Map conditional branches to source code

Source Code
1. If Statement
2. Loop Statements

for, while, do...while
3. Unsafe Operators

!, >, <, >=, <=, ==, !=, &&, ||, ?:

a

e

b

c

d

f

EXIT

g

h

Bytecode
Branches

Map

Debug Info

im Menü über:
Start > Absatz >

Listenebene

Automated Program Repair for Security78

Fix Patterns (Unsafe Operators)

2: iload_1
3: ifne 10

10: iconst_06: iconst_1
7: goto 11

11: istore_2

0: iconst_0
1: istore_1
2: iload_0
3: ifeq 8

6: iconst_0
7: istore_1

12: iconst_1
13: istore_1

14: iload_1
15: ireturn

8: iload_0
9: ifne 14

boolean b = !a; boolean b = not(a);

b == true
b == false

boolean not (boolean b) { // !
boolean result = false;
if (b) result = false;
if (!b) result = true;
return result;

}

constant-time utility methods

im Menü über:
Start > Absatz >

Listenebene

Automated Program Repair for Security79

Fix Patterns (If Statement)
Turn branches into conditional assignments

+ boolean cond = condExp;
- if (condExp) {

...
- var1 = exp1;
+ var1 = ite(cond, exp1, var1);

...
- } else {

...
- var2 = exp2;
+ var2 = ite(cond, var2, exp2);

...
- }

<T> T ite (boolean cond, T t1, T t2)
{ // ?:

T t = null;
if (cond) t = t1;
if (!cond) t = t2;
return t;

}

constant-time utility methods

im Menü über:
Start > Absatz >

Listenebene

Automated Program Repair for Security80

Fix Patterns (If Statement)
What if there is an early return / break / continue?

+ boolean earlyReturn = false;
+ RT returnValue = DEFAULT_VALUE;

...
if (condExp) {

...
- return x;
+ returnValue = x;
+ earlyReturn = true;

}
...

- return y;
+ return ite(earlyReturn, returnValue, y);

then use the
pattern from the
previous slide

im Menü über:
Start > Absatz >

Listenebene

Automated Program Repair for Security81

Fix Patterns (Loop Statement)
Iterate for a constant number of times

+ int ub = estimatedLoopBound;
- for (...; condExp; ...) {
+ for (...; --ub > 0; ...) {
+ if (!condExp) {
+ break;
+ }
}

then fix this IF

im Menü über:
Start > Absatz >

Listenebene

Research Questions

Automated Program Repair for Security82

§ RQ1 (Fix localization) Can Pendulum find the correct fix locations for the side-channel
vulnerabilities?

§ RQ2 (Vulnerability mitigation) To what extent does Pendulum mitigate the side-
channel vulnerabilities?

§ RQ3 (Side effect) Does Pendulum preserve the functionality of the program-to-fix?

§ RQ4 (Time and space impact) How do the generated patches influence the execution
time of the programs? How large are the patches?

im Menü über:
Start > Absatz >

Listenebene

Evaluation

Automated Program Repair for Security83

§ focus on timing side-channel vulnerabilities
§ secret-dependent unsafe operators, if statements, and loop statements

§ 42 subjects taken from QFuzz benchmark and other well-known Java security projects
§ e.g., Apache FTPServer, Eclipse Jetty, JDK, OrientDB, Picketbox, Spring-Security, ...

§ comparison to DifFuzzAR: DifFuzz-based repair approach
§ driver as localizer
§ removes early exits (elimination of all return statements but one)
§ adapts control-flow (modifies stopping condition, replication of block statements)

im Menü über:
Start > Absatz >

Listenebene

RQ1: Fix Localization

Automated Program Repair for Security84

§ we compare the identified fix locations with that of the developer fix for Pendulum and
DifFuzzAR

§ Pendulum identifies the fix locations successfully for all 42 subjects
§ while DifFuzzAR fails for 13 subjects: limited fix localization supported

im Menü über:
Start > Absatz >

Listenebene

RQ2: Vulnerability Mitigation

Automated Program Repair for Security85

§ compare the number of side-channel partitions between the original program, the
Pendulum-fixed program, and the developer fix

§ Pendulum is able to mitigate the vulnerability effectively for 33 of 42 (79%) subjects.
§ for 26 of these 33 subjects, Pendulum can entirely eliminate the side-channel

vulnerability
§ in contrast, DifFuzzAR can mitigate the vulnerability for only 15 (36%) subjects

k
timing partitions

k’
timing partitions

Repair

im Menü über:
Start > Absatz >

Listenebene

RQ3: Side Effects

Automated Program Repair for Security86

im Menü über:
Start > Absatz >

Listenebene

RQ3: Side Effects

Automated Program Repair for Security87

26

3

10

3

14

0

4

24

0 5 10 15 20 25 30

Semantics Changed

Semantics Unchanged
Not Mitigated

Semantics Unchanged
Partially Mitigated

Semantics Unchanged
Fully Mitigated

Comparison of Pendulum and DifFuzzAR on 42 Subjects

Pendulum DifFuzzAR

not all relevant locations are
revealed by collected samples

out-of-bound array accesses;
loop-related issues

im Menü über:
Start > Absatz >

Listenebene

RQ4: Time and Space Impact

Automated Program Repair for Security88

§ The Pendulum-generated repairs have an average slowdown of 43% and a median
slowdown of 3%.

§ This performance is close to that of the developer fixes.
§ Our median repairs are five lines larger than the original code and six lines larger than

the developer fixes.

im Menü über:
Start > Absatz >

Listenebene

Summary: Automated Detection, Quantification,
and Repair of Side-Channel Vulnerabilities

Automated Program Repair for Security89

§ localizing timing side-
channel vulnerabilities

§ mitigating them at source
code automatically

§ integrates with quantitative
fuzzing

Detection of
side-channel
vulnerabilities

Quantification
of side-channel
vulnerabilities

Repair of side-
channel

vulnerabilities

Developing
secure
software

Decision making in
(Secure) Software
Engineering

requires drives

enables

supports

Reduce vulnerability and
support developer

DifFuzz
(ICSE’19)

QFuzz
(ISSTA’21)

Pendulum
(TOSEM’24)

§ Trusted Automatic Programming à Trusted Automated Software Engineering
§ in the context of more and more automated programming:

§ explore unified processes/workflows, i.e., bring testing and repair closer together
§ Fuzzing Shifting Left

im Menü über:
Start > Absatz >

Listenebene

Automated
Program Repair

Machine Learning
Analysis

Software Testing

Human Factors
in SE

Intelligent Tutoring
Systems

Other things we work on

Automated Program Repair for Security90

§ Trusted Automatic Programming
§ APR in the era of Large Language Models (LLM)
§ Agentic Workflows for APR
§ Repair of Machine Learning models

§ Human Studies in SE
§ Developer surveys: Fuzzing + APR

§ Intelligent Tutoring Systems
§ Simulated Interactive Debugging

im Menü über:
Start > Absatz >

Listenebene

Automated Program Repair for Security91

Prof. Dr. Yannic Noller
yannic.noller@rub.de
https://yannicnoller.github.io/

Automated Program Repair for Security

im Menü über:
Start > Absatz >

Listenebene

CrashRepair: Key Idea

Automated Program Repair for Security33

Crash Location

Li

Lj

CFC

program
trace

CFCj

CFCi

Code Mutation plausible patches

im Menü über:
Start > Absatz >

Listenebene

CrashRepair: Overview

Automated Program Repair for Security42

Concolic
Execution Constraint Generator

Fix Localization

Constraint Translation

Patch Generator

Patch ValidatorConcentrated
Fuzzing enriched tests

crash
dump

taint flow fix locs

CFC

fix constraints

candidate patches

plausible patches

im Menü über:
Start > Absatz >

Listenebene

Fuzzing for Side-Channels (DifFuzz, ICSE‘19)

§ key aspect: search for path, for which side-channel observation differs because of
secret values

Automated Program Repair for Security60

initial seed files
1

queue
2

mutate
repeatedly

4

mutated files that showed
(new) interesting behavior6

parse
input

5 mutant selection by input evaluation for
the instrumented program P

P[s1, y] Check:
new cost
highscore or
improved
coverage

compute
cost

difference
P[s2, y]

a) cost
difference !

b) program
 coverage

c(s1, y),
cov1

c(s2, y),
cov2

! = # $ %&',)*#! − # $ %&',)*#"

select &
trim input

3

maximize
!"#, %&'! , %&'"

im Menü über:
Start > Absatz >

Listenebene

Automated Program Repair for Security75

Pendulum – Repair Workflow (TOSEM‘24)

im Menü über:
Start > Absatz >

Listenebene

RQ3: Side Effects

Automated Program Repair for Security88

26

3

10

3

14

0

4

24

0 5 10 15 20 25 30

Semantics Changed

Semantics Unchanged
Not Mitigated

Semantics Unchanged
Partially Mitigated

Semantics Unchanged
Fully Mitigated

Comparison of Pendulum and DifFuzzAR on 42 Subjects

Pendulum DifFuzzAR

not all relevant locations are
revealed by collected samples

out-of-bound array accesses;
loop-related issues

im Menü über:
Start > Absatz >

Listenebene

Comparison with SOTA

Automated Program Repair for Security46

Tool # Plausible # Correct

CrashRepair 29 19

SenX 12 3

ExtractFix 12 5

VulnFix 17 9

CPR 35 9
CrashRepair is more effective than existing
state-of-the-art for vulnerability repair

CrashRepair generates more plausible
patches than SenX, ExtractFix and VulnFix

CrashRepair generates a plausible patch for
29 instances without additional information

evaluated on 41 subjects in VulnLoc benchmark with 1hr timeout

https://yannicnoller.github.io/

