RUHR-UNIVERSITAT BOCHUM
Automated Program Repair for Security

Prof. Dr. Yannic Noller

03.03.2025 — MBZUAI — Abu Dhabi :
S e Software Quality group

Failures because of Software Bugs

DRC A AN

. o https://www.computerworld.com/article/3412197/top-software-failures-in-recent-history
https://spectrum.ieee.org/aerospace/aviation/how-the-
boeing-737-max-disaster-looks-to-a-software-developer

RUHR
Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Security Vulnerabilities

S sKyBox

SECURITY

Cumulative vulnerabilities

<
- 192,051 >

as of Dec. 31, 2022
150k

100k

SQ,V

50k

o

2013) 2022

Cumulative vuinerabilities

[1] Vulnerability and threat trends report, Skybox Security 2023
[2] Microsoft VulnerabilitiesReport, BeyondTrust, 2023
[3] X-Force Threat Intelligence Index 2023, IBM Security, February 24, 2023

Automated Program Repair for Security

25k+ vulnerabilities in 2022

Microsoft reported 1292 vulnerabilities in 2022 '

Vulnerabilities remain unpatched for 55 months in NPM
eco-system and 94 months for RubyGems

40.86% patched after disclosure in python packages

Increase of backdoors in 2022 exploiting known
vulnerabilities 2

RUHR
UNIVERSITAT
BOCHUM

This TalK: unified processes for software security repair

= Part 1. vulnerabilities that can be detected with sanitizers (e.g., during fuzzing)
» sanitizer-driven concolic execution to compute repair constraint
= taint/dependency analysis to identify potential fix locations
» search-based inspired code mutations

= Part 2: vulnerabilities that cannot be detected with current sanitizers
= timing side-channel vulnerabilities (hyper-property)

= provide feedback to the software developers (not just a monitoring solution) to
generate awareness for side channel risks arising from code patterns

= allow partial fixing instead of complete elimination to allow a tradeoff between
security and performance (pattern-based repair)

RUHR
7 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Part O
Background

Background — Fuzzing

= term fuzzing was coined by Miller et al. in 1990, when they used a random testing tool
to investigate the reliability of UNIX tools

= classification based on degree of program analysis
= blackbox / greybox / whitebox fuzzing
= classification based on generation technique
= search-based fuzzing
= generative fuzzing
= state-of-the-art in vulnerability detection: coverage-based, mutational fuzzing

Miller, B. P., Fredriksen, L., & So, B. “An Empirical Study of the Reliability of UNIX Utilities”, Commun. ACM 1990.

RUHR
9 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Greybox Fuzzing

@ DD mutated files that showed fuzzing driver
(new) interesting behavior

& Check for new
—p — - —pp| : tput
DDD ' \ @ :| parse execute | : oL P coverage or

initial seed files queue select & mutate input program P| : program program cra shes
0 e trim input repeatedly : : coverage or timeouts

e mutant selection by input evaluation for
the instrumented program P

RUHR
10 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Background — Sanitizer

= Key idea: instrument the program to make security issues visible/observable

= A sanitizer detects memory corruption, undefined behavior, and security vulnerabilities
during runtime, which makes them useful for fuzzing.

= Common Sanitizers:

= AddressSanitizer (ASan): Detects memory errors like buffer under/overflows, use-
after-free

= UndefinedBehaviorSanitizer (UBSan): Flags undefined behavior (e.g., signed integer
overflows, use of uninitialized memory).

= MemorySanitizer (MSan): Identifies use of uninitialized memory.
= ThreadSanitizer (TSan): Detects data races and thread synchronization issues.
= |eakSanitizer (LSan): Reports memory leaks.

1"

RUHR
Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Symbolic Execution

introduced by King!"l and Clarkel?!

analysis of programs with unspecified inputs, i.e. execute a program with symbolic
inputs

symbolic states represent sets of concrete states

for each path, build a path condition

= condition on inputs — for the execution to follow that path

= check path condition satisfiability — explore only feasible paths
symbolic state

= symbolic values / expressions for variables

= path condition

MJames C. King. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (July 1976), 385-394.

u instru Ct|on p0| nter 2IL. A. Clarke, "A System to Generate Test Data and Symbolically Execute Programs," in IEEE Transactions
on Software Engineering, vol. SE-2, no. 3, pp. 215-222, Sept. 1976.

12

RUHR
Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Example: concrete execution

code that swaps 2 integers concrete execution path
v
int x, y; x=1,y=0
if (x > vy) | v
X =X + y; X >y 7true
y = X - Y; : ¥
X =X — V; x=1+0=1
if (x > v)) v
assert false; Y= 1-0="1
} . Y
x=1-1=0
v
0> 17?false
v
END

RUHR
13 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Example: symbolic execution

symbolic execution tree

code that swaps 2 integers path condition n
\P[True] x=X, y=Y]
= int x, vy; e
if (X > y) { True X>Y7]
X=X +y; Fali/ \Erue
YRy [(x<¥]END | [[X>V]x=X+Y |
X = X — Vs
if (x >) | [X>Y]y=X+Y-Y=X |
assert false; y
\ | X>Y] x= X+YX Y |

| [X>Y] Y>X? |

Fals True
Hint: solve PCs to obtain test inputs EESAESECE CX>YAY>X>33‘9V”3'SG]

unsatisfiable !!!

RUHR
14 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

15

Example: concolic execution

code that swaps 2 integers

int x, vy;

if (x > y) A
X =X+t vy
y = x - y;
X =X —-Vy;

if (x > vy)
assert false;

Automated Program Repair for Security

concrete execution path

v
x=1,y=0
v
X >y 7true
v
x=1+0=1
v
y=1-0=1

v
x=1-1=0
v
0> 17false
v
END

follow the concrete execution path
while still collecting the information
about the symbolic state

symbolic information

[True] x=X,y=Y

[X>Y] x=X,y=Y

[X>Y] x= X+Y,y=Y

[X>Y] x= X+Y, y=X

[X>Y] x=Y, y=X

[X>YAY<X] x=Y, y=X

[X>YAY<X] x=Y, y=X

RUHR
UNIVERSITAT
BOCHUM

Automated Program Repair (APR)

buggy &

program C

+_]_
X 7.

. .: /D) ‘—t
test suite E /. .
localize generate validate —
APR fixed
bug report programs
RUHR
18 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

APR Approaches

Buggy program Code corpus
Fault localization Learning-based
Search-based <+ B Semantic Repair
Repair ' Repeir Learning/Interference
Generate patch Passing & Extract l
candidates failing tests ™ constraints
'l 1 Model of patches
2 A l
Validate patch Code Synthesise code via
candidates transformations constraint solving Predict patch

!

Patch

State-of-the-art in Program Repair: Pictorial view derived from Communications of the ACM article 2019.

https://nus-apr.github.io/

RUHR
19 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Security Vulnerability Repair

' only one failing test-case available weak specification
tF test-oracle is crash-freedom ' many plausible patches

Examples of over-fitting patches:

if (((1 > 0) && (1 > 0))) exit(l);

if (((! (image->res unit == 3)) && (! (image->res unit == 3)))) return;
if (0 00l ((= 4) == 10))) && ((! (0 ==20)) [(! (64 ==20)))))) break;
if ((! ((log_ level && (! ((- 4) == 0))) && log level))) exit(0);

RUHR
22 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Greybox Fuzzing

mutated files that showed
(new) interesting behavior

o]

, fuzzing driver

Example: symbolic execution

code that swaps 2 integers

symbolic execution tree
path condifion

-

OO0

initial seed files queue mutate

ﬁ e repeatedly

1
output Check for new
coverage or
program program crashes
coverage or timeouts

e mutant selection by input evaluation for
the instrumented program P

==|int x, y;
if (x > y) {
X =x+vy;

assert false;

y =% -y
=y ([x<v]END]
if (x > y)

True

[X>YAY<X] END [X>YAY>X] dssert false

Hint: solve PCs to obtain test inputs

unsatisfiable !!!

10 Automated Program Repair for Security

RUHR
UNIVERSITAT R U B
BOCHUM

14 Automated Program Repair for Security

RUHR
UNIVERSITAT R U B
BOCHUM

Automated Program Repair (APR)

2 (o
program
@
test suite ‘

bug report

localize generate validate

|||
fixed
programs

Security Vulnerability Repair

weak specification

I ‘ only one failing test-case available
tF ‘ test-oracle is crash-freedom

-

many plausible patches

Examples of over-fitting patches:

if (((1 > 0) && (1 > 0))) exit(l);

if (((! (image->res_unit == 3)) && (! (image->res_unit == 3)))) return;
if (0 (0 ((=4) ==0))) && ((! (0 ==0)) [I (! (64 ==0)))))) break;
if ((! ((log_level && (! ((- 4) == 0))) && log level))) exit(0);

18 Automated Program Repair for Security

RUHR
UNIVERSITAT
BOCHUM

22 Automated Program Repair for Security

RUHR
UNIVERSITAT
BOCHUM

23

Automated Program Repair for Security

RUHR
UNIVERSITAT
BOCHUM

RUB

Part 1
Security Vulnerability Repair via
Concolic Execution and Code

Mutations

Vulnerability Repair via
Concolic Execution and Code Mutations

RIDWAN SHARIFFDEEN, National University of Singapore, Singapore
CHRISTOPHER S. TIMPERLEY, Carnegie Mellon University, USA
YANNIC NOLLER, Ruhr University Bochum, Germany

CLAIRE LE GOUES, Carnegie Mellon University, USA

ABHIK ROYCHOUDHURY, National University of Singapore, Singapore

Security vulnerabilities detected via techniques like greybox fuzzing are often fixed with a significant time lag.
This increases the exposure of the software to vulnerabilities. Automated fixing of vulnerabilities where a tool
can generate fix suggestions is thus of value. In this work, we present such a tool, called CRASHREPAIR, to
automatically generate fix suggestions using concolic execution, specification inference, and search techniques.
Our approach avoids generating fix suggestions merely at the crash location because such fixes often disable
the manifestation of the error instead of fixing the error. Instead, based on sanitizer-guided concolic execution,
we infer desired constraints at specific program locations and then opportunistically search for code mutations
that help respect those constraints. Our technique only requires a single detected vulnerability or exploit as
input; it does not require any user-provided properties. Evaluation results on a wide variety of CVEs in the
VulnLoc benchmark, show CRASHREPAIR achieves greater efficacy than state-of-the-art vulnerability repair
tools like Senx. The repairs suggested come in the form of a ranked set of patches at different locations, and
we show that on most occasions, the desired fix is among the top-3 fixes reported by CRASHREPAIR.

using sanitizer-guided
concolic execution,
specification inference, and
search techniques

avoids just disabling the error
manifestation

no user-provided property
needed

tool: CrashRepair

R. Shariffdeen, C. S. Timperley, Y. Noller, C. Le Goues, and A. Roychoudhury. 2024. Vulnerability Repair via Concolic
Execution and Code Mutations. ACM Trans. Softw. Eng. Methodol. https://doi.org/10.1145/3707454

25 Automated Program Repair for Security

RUHR
UNIVERSITAT
BOCHUM

CrashRepair: Workflow

Fuzzing

Crashing
Input(s)

Engine

= Fix Localization and Specification Inference using Semantic Analysis

o

A 4

Concolic

Executio |
@

CrashRepair Workflow [—— —————— — — =
Plausible Correct
Search Patches Differential | Fatches Distance
based > Testin »| Ranking
Repair gf":
Y &
=

= generate a crash-free constraint for the program

= identify fix locations using program dependencies

= Constraint guided Code Mutations

= finds correct error-handling procedures

= constraint guided mutators to efficiently navigate the search space

Ranked
Patches

32

Automated Program Repair for Security

RUHR
UNIVERSITAT
BOCHUM

RUB

33

CrashRepair: Key Idea

program

PA tF / trace

Code Mutation

Y

CFC Crash Location

Automated Program Repair for Security

plausible patches

RUHR
UNIVERSITAT
BOCHUM

lllustrative Example

CVE-2016-10092
detected by using AFL

FILE: libtiff/tif unix.c:340 heap-based buffer overflow

\ void allows remote attackers to

_TIFFmemcpy (void* d, const void* s, tmsize_t c)

0 have unspecified impact
via a crafted image

memcpy (d, s, (size_t) c);

==173185==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x6210000000ff at
pc 0x0000004d9dcc bp 0x7f£f£f071360f0 sp 0x7f£££071358a0
WRITE of size 1 at 0x6210000000ff thread TO

#0
#1
#2
#3
#4
#5
#6
#7
#8

0x4d9%dcb
0x5e8984
Ox5eacd0O
Ox5ce351
0x532b10
0x5203e5
0x51a85f

in
in
in
in
in
in
in

__asan _memcpy /tmp/llvm/compiler-rt/lib/asan/asan interceptors memintrinsics.cc:23
_TIFFmemcpy /data/vulnloc/libtiff/CVE-2016-10092/src/libtiff/tif unix.c:340:2

DumpModeDecode /data/vulnloc/libtiff/CVE-2016-10092/src/libtiff/tif dumpmode.c:103:3
TIFFReadEncodedStrip /data/vulnloc/libtiff/CVE-2016-10092/src/libtiff/tif read.c:2639:6
readContigStripsIntoBuffer /data/vulnloc/libtiff/CVE-2016-10092/src/tools/tiffcrop.c:8408:30
loadImage /data/vulnloc/libtiff/CVE-2016-10092/src/tools/tiffcrop.c:10756:13

main /data/vulnloc/libtiff/CVE-2016-10092/src/tools/tiffcrop.c:7064:11

0x7£70cbb90c86 in libc start main (/1ib/x86 64-linux-gnu/libc.so.6+0x21c86)
0x41bld9 in start (/data/vulnloc/libtiff/CVE-2016-10092/src/tools/tiffcrop+0x41bld9)

RUHR
34 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

lllustrative Example
CVE-2016-10092

1 static int readContigStripsIntoBuffer (TIFF* in, uint8* buf) {

2 uint8* bufp = buf;

3 int32 bytes_read = 0;

4 uint32 stripsize = TIFFStripSize(in);

5

6 for(strip = @; strip < nstrips; strip++) {

7 bytes_read = TIFFReadEncodedStrip(in, strip, bufp, -1);

8 rows = bytes_read / scanline_size;

9 if ((strip < (nstrips - 1)) && (bytes_read != (int32)stripsize))

10 TIEEEREOr G)i

11

ey ey

ii in the failing test case:

15} corn T » the bytes read gets assigned to a
16 return 1;
17 } /* end readContigStripsIntoBuffer */ negatlve number, which Iaterv in line 12’

= causes a buffer overflow triggered in a

different program location
Automated Program Repair for Security n When accessing the pOinter bufp

Specification Inference

powered by concolic

grash execution with KLEE
Concolic ump .
Execution Constraint Generator
P t Violated Safety Property Stack Trace Symbolic Store
Izl ‘[? ! ! I I :
I Memory Write Error tif _unix.c:340:2 bv231727104 |

CFC: ((base @var(pointer, d)) <= @var(pointer, d))

RUHR
36 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Specification Inference CFC = Crash Free Constraint

CFC: ((base @var(pointer, d)) <= @var(pointer, d))

= a security property capturing a memory safety property for the pointer variable d

= the memory address accessed by the pointer should be within the bounds of the
memory allocation

= in this case, the violation is on the lower bound, which is the base address of the
memory region

= variable d is a pointer used by the crashing function _ TIFFmemcpy located in the
source file libtiff/tif _unix.c

= @var(pointer, d) = the current address captured by the pointer d
= (base @var(pointer, d)) = base address for the pointer captured by the program
» base address = starting address for allocated memory region accessed with d

RUHR
37 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Fix Localization

crash
. dump
Concolic _
Execution > Constraint Generator
i CFC: ((base @var(pointer, d)) <= @var(pointer, d))
taint flow Fix Localization
‘| CcFC > Taint Sources > Filter Trace

LO: DumpModeDecode, /data/vulnloc/libtifff CVE-2016-

Fix Locations | 10092/src/libtiff/tif dumpmode.c:103:36

L6: readContigStripsintoBuffer, /data/vulnloc/libtiff/ CVE-2016-
10092/srcl/tools/tiffcrop.c:8420:22

RUHR
38 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Constraint Translation

Py

39

Lr

Translated
Constraints

crash
Concolic dump . CFC
E : > Constraint Generator
xecution . .
; Constraint Translation
taint flow Fix Localization fix locs

| Fix Loc Program Expressions || Symbolic Expression SMT Solver i
tiffcrop.c: bufp Y £ Equivalent)\ !
i 8420:22 bufp + buf a+f : Not Equivalent : '

LO: (@var(pointer, crepair_base(buf)) <= @var(pointer, buf))
L6: (@var(pointer, bufp) <= (@var(pointer, bufp) + (@result(integer))))

- L6: 0 <= (@result(integer))

Automated Program Repair for Security

Can we map the
expressions in the
CFC to local variables
in the fix location?

RUHR
UNIVERSITAT
BOCHUM

Code Mutation

buf: bv231727101

0 <= (@result(integer))

ExpressionMutation
GuardStatement

crash
dump
ncoli . CFC
ot colic > Constraint Generator
Execution : :
; Constraint Translation
taint flow . | T -
Fix Localization fix locs fix constraints
Y
PA tF Patch Generator
Fix Loc Program States Repair Constraint Repair Operator |
candidate | T . o |
tches . | :
patc - tiffcrop.c: i bufp: bv231727104 : ! !

40

' 8420:22

Automated Program Repair for Security

RUHR
UNIVERSITAT
BOCHUM

41

lllustrative Example

CVE-2016-10092

TIFF

Plausible Patches

tiffcrop.
tiffcrop.
tiffcrop.
tiffcrop.
if ((buf
trip, bufp,

NS on ok w N

tiffcrop.
tiffcrop.

c:8405: 1if (! ((buf <= bufp
c:8405: 1if (! ((buf <= bufp
c:8405: 1if (! ((buf <= bufp
c:8405: 1if (! ((buf <= bufp

<= bufp)) { bytes read =T
-1); }

c:8417: bufp += *bufp;

c:8417: bufp += stripsize;

'jjvvvv

{ return -1; }

{ return -1.0; }

{ return 1; }

{ break; }
ReadEncodedStrip (in,

7

|

Identical developer patch is ranked in top-10

Same patch also fixes CVE-2016-10272 which is another buffer overflow

Automated Program Repair for Security

RUHR
UNIVERSITAT
BOCHUM

CrashRepair: Overview

Py

42

CFC

Constraint Translation

?Iojs

fix constraints

Y

Patch Generator

v

candidate patches

crash
i dump
Concolic _
Execution > Constraint Generator
taint flow Fix Localization
Concentrated :
Fuzzing > enriched tests =

Automated Program Repair for Security

Patch Validator

Y

plausible patches

RUHR
UNIVERSITAT
BOCHUM

Comparison with SOTA

Tool # Plausible # Correct
CrashRepair 29 19
SenX 12 3
ExtractFix 12 5
VulnFix 17 9
CPR 35 9

\\

Vs

CrashRepair generates a plausible patch for
29 instances without additional information

Vs

\\

CrashRepair generates more plausible
patches than SenX, ExtractFix and VulnFix

-

46

evaluated on 41 subjects in VulnLoc benchmark with 1hr timeout

Automated Program Repair for Security

\\

CrashRepair is more effective than existing
state-of-the-art for vulnerability repair

RUHR
UNIVERSITAT
BOCHUM

Comparison with SOTA

ExtractFix ExtractFix

CrashRepair CrashRepair

VulnFix VulnFix

B CaMepse B SenX Otracfa Wi on S Cwhepre B Senx e S Wil on

(a) Plausible Patches (b) Correct Patches

RUHR
47 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Limitations

= Limitations in KLEE

= Does not support floating points, longjmps etc
= Limitations in detecting memory overflows (i.e. environment modeling)

= Does not handle inputs which leads to large symbolic constraints which will timeout the

concolic execution

= Fix-ingredients are derived from observed program expressions

48

RUHR
Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

security vulnerabilities

to the developer fix location

the-art techniques

Fuzzing

Crashing
Input(s)

Engine

O

h 4

Concolic

Summary: CrashRepair

CrashRepair Workflow

Search
based

Execution__|
@

Repair

= Combined semantic analysis with code mutation to find high-quality patches for
= Program dependency based fix localization can effectively identify fix locations closer

= Constraint-guided search finds high-quality patches compared to existing state-of-

— i ——— — — — — — —y

Plausible
Patches

Y

Differential

Testing .-
r 4%
_&sfl

Correct |
Realio .| Distance Ranked
”| Ranking | Patches

L g%g |

= |

49

Automated Program Repair for Security

RUHR
UNIVERSITAT
BOCHUM

RUB

Part 2
Detection, Quantification, Repair
of Side-Channel Vulnerabilities

Potential Side-Channel Leakages

By David B. Gleason from Chicago, IL - The Pentagon, CC BY-SA 2.0,
https://commons.wikimedia.org/w/index.php?curid=4891272

RUHR
51 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Side-Channel Analysis

d leakage of secret data o boolean pwcheck_unsafe (byte[] pub, byte[] sec) {
0 software side-channels 1 if(pub.length I= sec.length) {
) 2 return false;
U observables: .
" executiontime . for(inti=0;i< pub.length; i++) {
= memory consumption 5 if (oubli] != sec]i]) {
= response size 6 return false;
» network traffic ’ } }
8
. 9 return true;
10 }
Where do we find them?
- conditional early return
O application code, e.g., Apache Tomcat, FtpServer, ... causes leakage
Q security libraries, e.qg., JDK, spring security, Bouncy Castle, ...

RUHR
52 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Differential Software Testing

= identify behavioral differences

P 4 behavior4 h behavior4
IZI program P ? program P ?_
input A [g _
: ||_l|“ — Ll &8
— | ——fp | |n y -y | ———— | —)p | |n
_— behaviorz inputs E— behaviorz
program P’ program P

RUHR
53 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Differential Software Testing

= identify behavioral differences

for the same program with two

different inputs — | I“

= security, reliability — | ——— | — |- I _

for example, inputy behaviors

P ?

= Worst-Case Complexity Analysis program =

= Side-Channel Analysis — III“

= Robustness Analysis of Neural = | 'b -
Network inputz ehaviorz

program P

RUHR
Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Path to Side-Channel Repair

enables |'/ Decision making in
, (Secure) Software :
' Engineering /
Detection of quires Quantification e Repair of side- ¢,pports Developing
side-channe|l === of side-channe| === channel ——] secure
vulnerabilities™ vulnerabilities vulnerabilities software
DifFuzz QFuzz Pendulum
(ICSE’19) (ISSTA’21) (TOSEM’24) Reduce vulnerability and

support developer

* initially motivated by the DARPA Space/Time Analysis for Cybersecurity (STAC) program

RUHR
55 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Path to Side-Channel Repair

/ . . . \
enables { Decision making in
, (Secure) Software :
' Engineering /
Detection of | quires Quantification e Repair of side- ¢,pports Developing
side-channe|l === of side-channe| == channel ——] secure
vulnerabilities vulnerabilities vulnerabilities software
DifFuzz QFuzz Pendulum
ISSTA21 TOSEM’24 Reduce vulnerability and
(ICSE,1 9) () () support developer

|

RUHR
56 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)

DIFFuUzz: Differential Fuzzing for Side-Channel
Analysis

Shirin Nilizadeh* Yannic Noller*

Corina S. Pisdreanu

University of Texas at Arlington Humboldt-Universitit zu Berlin Carnegie Mellon University Silicon Valley,

Arlington, TX, USA Berlin, Germany
yannic.noller@hu-berlin.de

shirin.nilizadeh@uta.edu

Abstract—Side-channel attacks allow an adversary to uncover
secret program data by observing the behavior of a program

NASA Ames Research Center
Moffett Field, CA, USA

Given a program whose inputs are partitioned into public and
secret variables, DIFFUZZ uses a form of differential fuzzing

with respect to a such as jon time,

memory or response size. Side-channel vulnerabilities are difficult
to reason about as they involve analyzing the correlations
by usage over ple program paths. We present
D1¥FUZZ, a fuzzing-based app for ide-ch; 1
vulnerabilities related to time and space. DIFFUZZ automatically
detects these vulnerabilities by analyzing two versions of the
program and using resource-guided heuristics to find inputs that
maximize the difference in resource consumption between secret-
dependent paths. The methodology of DIFFUZZ is general and
can be applied to programs written in any language. For this
paper, we present an implementation that targets analysis of
JAVA programs, and uses and extends the KELINCI and AFL
fuzzers. We evaluate DIFFUZZ on a large number of JAva
programs and demonstrate that it can reveal unknown side-
channel vulnerabilities in popular applications. We also show that
D1¥FUZZ compares favorably against BLAZER and THEMIS, two
state-of-the-art analysis tools for finding side-channels in JAva

o ically find prog inputs that reveal side chan-
nels related to a specified resource, such as time, consumed
memory, or response size. We focus specifically on timing and
space related vulnerabilities, but the approach can be adapted
to other types of side channels, including cache based.
Differential fuzzing has been successfully applied before for
finding bugs and vulnerabilities in a variety of applications,
such as LF and XZ parsers, PDF viewers, SSL/TLS libraries,
and C compilers [36], [38], [41]. However, to the best of
our knowledge, we are the first to explore differential fuzzing
for side-channel analysis. Typically such fuzzing techniques
analyze different ions of a prog pting to di
bugs by observing differences in execution for the same
inputs. In contrast DIFFUZZ works by analyzing two copies
of the same program, with the same public inputs but with

uses differential fuzzing to
automatically find side-channel
vulnerabilities

outperforms static analysis
techniques

applies on system level

cannot tell how severe a
vulnerability might be

S. Nilizadeh, Y. Noller and C. S. Pasareanu, "DifFuzz: Differential Fuzzing for Side-Channel Analysis”, ICSE’2019,
https://doi.org/10.1109/ICSE.2019.00034

57

Automated Program Repair for Security

RUHR
UNIVERSITAT
BOCHUM

https://doi.org/10.1109/ICSE.2019.00034

Side-Channel Analysis (ontinueq)

secure if the secret data can not be inferred by an attacker through their observations of
the system (aka non-interference)

can be solved by self-composition [Barthe2004]
program execution P[pub, sec,]
cost observation c(P[pub, sec,])
two secretvalues c(P[pub,sec;]) c(P[pub,sec,])
equivalence C(P :pub, Seclj) = C(P [pub, SeCZ])

V pub, secq, sec,: c(P[pub,sec,]) = c(P[pub, sec,])

Barthe, G., D’Argenio, P. R., & Rezk, T. “Secure information flow by self-composition”, IEEE Computer Security
Foundations Workshop, 2004.

RUHR
58 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Fuzzing for Side-Channels (DifFuzz, ICSE“19)

key aspect: search for path, for which side-channel observation differs because of

secret values
Ijl:l mutated files that showed
@ (new) interesting behavior

c(st, y),
Pls+, Yl % a) cost
T 0 - @~]
. g . |nput COS
tial d fil i
initial seed files queue seloct & rem:;?;zl . /7 difference| b) Eg\)/g:zme
a e trim input P y 2 c(sz, y), 9

e e cove

Check:

new cost
highscore or
improved
coverage

maximize J = |c (P [PUb; S ecl]) —C (P [pub’ se Cz])l e mutant selection by input evaluation for

the instrumented program P
pub, secy, sec,

RUHR
59 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

o boolean pwcheck_unsafe (byte[] pub, byte[] sec) {
1 if (pub.length != sec.length) {
2 return false;
Example Results)
4 for (inti = 0; i < pub.length; i++) {
if (publi] != sec]i
Initial Input: costoir = 0 : oo
7 }
secret: = [72,]1101, 108, 108, 111, 32, 67] g }
secret2 = [97,|114, 110, 101, 103, 105, 101] 9 return true;
public = [32,| 77, 101, 108, 108, 111, 110] 10 }

costoiff > 0 after ~ 5 sec

Input with highscore costoif = 47 after ~ 69 sec
(maximum length = 16 bytes):

secret: = [72,|77, -16, -66, -48, -48, -48, -48, -28, 0, 100, 0, O, O, O, -48]
-4, -48, 7, 17, 0, -24, -48, -48, 16, -48, -3, 108, 72, 32, 0]
-4, -48, 7, 17, 0, -24, -48, -48, 16, -48, -3, 108, 72, 32, 0]

RUHR
60 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Is there a vulnerability?

<~

How much information can be leaked?

RUHR
61 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Path to Side-Channel Repair

4 \
enables { Decision making in
, (Secure) Software :
' Engineering /
Detection of | quires Quantification e Repair of side- ¢,pports Developing
side-channe| === of side-channe| == channel — secure
vulnerabilities vulnerabilities vulnerabilities software
DifFuzz QFuzz Pendulum
ICSE’'19 TOSEM’24 Reduce vulnerability and
() (ISSTA,21) () support developer

|

RUHR
62 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

S)

QFuzz: Quantitative Fuzzing for Side Channels

Yannic Noller
yannic.noller@acm.org
National University of Singapore
Singapore

ABSTRACT

Side channels pose a significant threat to the confidentiality of
software systems. Such vulnerabilities are challenging to detect
and evaluate because they arise from non-functional properties of
software such as execution times and require reasoning on multi-
ple execution traces. Recently, noninterference notions have been
adapted in static analysis, symbolic execution, and greybox fuzzing
techniques. However, noninterference is a strict notion and may
reject security even if the strength of information leaks are weak. A
quantitative notion of security allows for the relaxation of noninter-
ference and tolerates small (unavoidable) leaks. Despite progress in
recent years, the existing quantitative approaches have scalability
limitations in practice.
In lhls work we present QFuzz, a greybox fuzzing technique to
ly evaluate the h of side ct Is with a focus
on min entropy. Min entropy n a measure based on the number
of distinguishable observations (partitions) to assess the resulting
threat from an attacker who tries to compromnse secrets in one try.
We develop a novel greybox fuzzing equipped with two i

Saeid Tizpaz-Niari
saeid@utep.edu
University of Texas at El Paso
USA

KEYWORDS

vulnerability detection, side-channel analysis, quantification, dy-
namic analysis, fuzzing

ACM Reference Format:

Yannic Noller and Sacid Tizpaz-Niari. 2021. QFuzz: Quantitative Fuzzing
for Side Channels. In Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA '21), July 11-17, 2021,
Virtual, Denmark. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3460319.3464817

1 INTRODUCTION

Side-channel (SC) vul bilities allow kers to ise se-
cret information by observing runtime behaviors such as response
time, cache hit/miss, memory consumption, network packet, and
power usage. Software developers are careful to prevent malicious
cavesdroppers from accessing secrets using techniques such as en-

cryption. However, these techniques often fail to security
in the presence of side channels since they arise from non-functional
behaviors and require simul ing over multiple runs.

algorithms that try to maximize the number of dlstmgulshablt
observations and the cost differences between them.

We evaluate QFuzz on a large set of benchmarks from existing
work and real-world libraries (with a total of 70 subjects). QFuzz

Side-channel attacks remain a challenging problem even in se-
curity-critical applications. There are known practical side-channel
attacks against the RSA algorithm [7], an online health system [10],
the Google's Keyczar Library [24], and the Xbox 360 [37]. In the

Yannic Noller and Saeid Tizpaz-Niari,

https://doi.org/10.1145/3460319.3464817

uses greybox fuzzing to
quantitatively evaluate the
strength of side channels

focuses on min entropy

explores two partitioning
algorithms that try to maximize
the number of distinguishable
observations

cannot localize the vulnerability
published at ISSTA2021

“QFuzz: quantitative fuzzing for side channels”, ISSTA 2021

63

Automated Program Repair for Security

RUHR
UNIVERSITAT
BOCHUM

https://doi.org/10.1145/3460319.3464817

Timing SC Vulnerability: An Example
P (o) i
0g in with A (omoox) {2

“sesame” E’ p (sexxxx i 3ms i
)

o
o
P C‘sesame”)g 7ms

RUHR
64 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Timing SC Vulnerability: Quantification

RUHR
65 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Threat Model

= We adapt our threat model from a chosen-message attack [cCs'07]
= i.e., an adversary picks an ideal public input to compromise secret inputs in one trial

= Offline: The attacker, who has access to the source code, can sample secret and
public inputs on their local machine arbitrarily many times and construct an ideal public
input that partitions the secret into many classes of timing observations.

= Online: The attacker queries the target application with the best guess, observes side
channels, and maps the observation to a partition of secret inputs.

Boris Kopf and David Basin. 2007. An Information-Theoretic Model for Adaptive Side-Channel Attacks. CCS ’07.
https://doi.org/10.1145/1315245.1315282

RUHR
66 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

https://doi.org/10.1145/1315245.1315282

Quantificati()n (QFuzz, ISSTA21)

Threat Model

Attacker can pick an ideal public
input to compromise the secret value
/ or some properties of it in one try.

~

Information Leakage: min-entropy [Smith2009]

Assuming that the program P is deterministic and the How to identify
distribution over secret input 2 is uniform, then the

such inputs?
information leakage can be characterized log, k* (¢=0). . /P roblem Statement 7
20

- , /1 S Find set of(Secret values 2 and public
maximum number of value v* that .
classes in the cost log|Zy—y:| Cy :
observations rexime) number of observation
@ h the highest distance 6.
? How to characterize

observation classes? RUHR RU B
UNIVERSITAT

BOCHUM

T

67 Automated Program Repair for Security

Quantificati()n (QFuzz, ISSTA21)

How to identify
such inputs?

mutated files that showed
(new) interesting behavior

fuzzing driver

Fuzzing 1

initial seed files queue

o o e repeajoledly

Mmaxs,, . . sgy |Parte(c(sy,y), .., (S, Y+ (1 — 3_0'1*5)
L)L J

How to characterize
observation classes?

1
Pls1,y] L /3 :; #?art\tions k
minimum
. check for
— |:| - 3 »@—» parse |_»Pls,, y] compute | 9578 | improved
e L A input artitions partitionin
itat P c) program 9
triminput _Mutate coverage | OF Goverage
Plsi, y] | /o)

T
Maximize number
of partitions

68 Automated Program Repair for Security

T

Maximize the difference
between the partitions

e mutant selection by input evaluation for
the instrumented program P

Partioning c(st1,y)
Algorithm cls2, y) > P
KDynamic & c(ss, y)
Greedy clse, y) > P2
RUHR
UNIVERSITAT RUB

BOCHUM

QFuzz: Workflow

e I‘_‘"j mutated files that showed fuzzing driver
(new) interesting behavior
P[s1, V] cls1,y), a) #partitions k
] ’ COV1 : .
2 : b) minimum
&_ : : distance & .CheCk for
> - \ > *E parse P[SQ, y] 80352- y), Compute é |mproved
initial seed files queue trim nout mutate input : partitions c) program partitioning
a amInput — epeatediy coverage | OF coverage
L2 © @ Plsk, y1|,/%6. v
COVk

e mutant selection by input evaluation for
maxs, sy |Parte(c(sy,y), ..., c(sg, Y|+ (1 — e701%9) the instrumented program P
\)

Maximize number Maximize the difference

of partitions between the partitions
RUHR
69 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Exam p I e (K=100, =1, length=16, count=bytecode-instruction)

stringEquals (Original Jetty, v1) stringEquals (Current Jetty, v4)

boolean stringEquals(String s1, String s2) { boolean stringEquals(String s1, String s2) {
if (s1 == s2) if (s1 == s2) return true;
K_1 7 return true; if (s1 == null || s2 == null) K_g
-_ if (s1 == null || s2 == null || return false; ==
6_3 s1.length() != s2.length()) boolean result = true; 6 _1
- return false; int 11 = s1.length(); -
for (int i = 0; i < sl.length(); ++i) int 12 = s2.length();
if (sl1.charAt(i) != s2.charAt(i)) for (int i = 0; i < 12; ++i)
return false; result &= s1.charAt(i%1l1) == s2.charAt(i));
return true; return result && 11 == 12;
3 3
stringEquals (Safe Jetty, v5) Equals (Unsafe Spring-Security)
boolean stringEquals(String s1, String s2) { boolean Equals(String s1, String s2) {
if (s1 == s2) return true; if (s1 == null || s2 == null)
if (s1 == null || s2 == null) return false;
return false; byte[] s1B = s1.getBytes("UTF-8");
int 11 = s1.length(); byte[] s2B = s2.getBytes("UTF-8"); DifFuzz
K—1 int 12 = s2.length(); int lenl = s1B.length; oA
-_ if(l2 == @){return 11 == 0} int len2 = s2B.length; -
int result |= 11 - 12; if (lenl != len2)
for (int i = 0; i < 12; ++i){ return false;
int r = ((i - 11) >>> 31) % i; int result = 0; l
result |= s1.charAt(r) * s2.charAt(i); for (int i = 0; i < len2; i++) only leaks
3} result |= s1B[i] * s2B[i]; .
return result == 0; return result == 0; eXIStence Of
’ . special character

RUHR
70 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

How much information can be leaked?

<~

How can we fix the issue?

RUHR
71 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Path to Side-Channel Repair

/ . . . \
enables { Decision making in
, (Secure) Software :
' Engineering /
Detection of | quires Quantification e Repair of side- ¢,pports Developing
side-channe|l === of side-channe| == channel ——] secure
vulnerabilities vulnerabilities vulnerabilities software
DifFuzz QFuzz Pendulum
ICSE’'19 ISSTA21 ’ Reduce vulnerability and
() () (TOSEM 24) support developer

|

RUHR
72 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

= uses collected observations

from QFuzz to localize the

wox Timing Side-Channel Mitigation via Automated Vu|nerabi|ity
Program Repair

| | = applies (safe) operators to
NI ER B e s transform the source code

SAEID TIZPAZ-NIARI, University of Texas at El Paso, El Paso, TX, USA . .
SUDIPTA CHATTOPADHYAY, Singapore University of Technology and Design, = canin tro d uce Ssi d e —effe Cts

Singapore, Singapore
ABHIK ROYCHOUDHURY, National University of Singapore, Singapore, Singapore

Side-channel vulnerability detection has gained prominence recently due to Spectre and Meltdown attacks. - p u bI iS h ed i n TO S E M 2 024

Techniques for side-channel detection range from fuzz testing to program analysis and program composition.
Existing side-channel mitigation techniques repair the vulnerability at the IR/binary level or use runtime moni-
toring solutions. In both cases, the source code itself is not modified, can evolve while keeping the vulnerability,
and the developer would get no feedback on how to develop secure applications in the first place. Thus, these
solutions do not help the developer understand the side-channel risks in her code and do not provide guidance
to avoid code patterns with side-channel risks. In this article, we present PENDULUM, the first approach for
automatically locating and repairing side-channel vulnerabilities in the source code, specifically for timing
side channels. Our approach uses a quantitative estimation of found vulnerabilities to guide the fix localization,
which goes hand-in-hand with a pattern-guided repair. Our evaluation shows that PENDULUM can repair
a larese number of side-channel vulnerabilities in real-world apolications. Overall our approach intesrate:

Haifeng Ruan, Yannic Noller, Saeid Tizpaz-Niari, Sudipta Chattopadhyay, and Abhik Roychoudhury. “Timing Side-
Channel Mitigation via Automated Program Repair’, TOSEM 2024. https://doi.org/10.1145/3678169

RUHR
73 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

https://doi.org/10.1145/3678169

Pendulum - Repair WorkfIOW(TOSEM‘24)

o Localize
O basic block
s patched

buggy buggy Apply program |QFuzz

QFuzz block code ~|fix patterns | again
Localize

source code

Bug Detection Fix Localization Patch Generation® Patch Validation

RUHR
74 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Fix Localization (Basic Block)
Compare traces to find where they diverge

F)
P(y,sz) ae fg EXIT

RUHR
75 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Fix Localization (Basic Block)

Compare traces to find where they diverge

P(y,s;):abcbcdfgEXIT
s;):abcd fh EXIT

Y
<

Q
®]
5
<
(©)
n]
«Q
()
Q
~
o

|__(post-dominator of c) | | converge at EXIT |
_____ ! (post-dominator of f) |
————————————— -I ‘\ [I _____________________I
- dlverge at f E—---* \ aN /’
--------------- ‘ \\ e
! -
. Lh EXIT

RUHR
76 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Fix Localization (Source Code)

Map conditional branches to source code

/ Byteco@

Branches
/Source Code \
e Map 1. If Statement
I 2. Loop Statements
g Debug Info for, while, do...while
3. Unsafe Operators
> <, >= <= == 1= &&, ||, ?:
: l N L

e

RUHR
77 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Fix Patterns (Unsafe Operators)

: boolean b = !a; ! E
2: iload_1
3: ifne 10

/

: iconst o
: istore_1
: iload o
: ifeq 8

6: iconst_1
7: goto 11

10: iconst ©

\ /

~

11: istore_2

78

Automated Program Repair for Security

: iload o
: ifne 14

U

//Loolean not (boolean b) { // !‘\

boolean result = false;
if (b) result = false;
if (!b) result = true;
return result;

J

6: iconst_o
7: istore_1

T~

constant-time utility methods

/

12: iconst_1
13: istore 1

14:
15:

iload_1
ireturn

RUB

RUHR
UNIVERSITAT
BOCHUM

Fix Patterns (If Statement)

Turn branches into conditional assignments

//:fgoolean cond = condExp; ﬂ\\\

- if (condExp) {
ce //:T> T ite (boolean cond, T t1, T tZ;\\
- varl = expl; {// ?:
+ varl = ite(cond, expl, varl); Tt = null:
ce if (cond) t = t1;
- } else { if (lcond) t = t2;
“o return t;
- var2 = exp2; }
+ var2 = ite(cond, var2, exp2); \\\7 “//

K} o / constant-time utility methods

RUHR
79 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Fix Patterns (If Statement)

What if there is an early return / break / continue?

//:fgoolean earlyReturn = false; <‘\\\

+ RT returnValue = DEFAULT_VALUE;

if (condExp) {

- return Xx;

+ {returnvalue = x; 1} then use the
+ i earlyReturn = true; | > paﬂ§n1ﬁoq1the
} RS ! previous slide

- return y;
+ return ite(earlyReturn, returnValue, y)i’///

RUHR
80 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Fix Patterns (Loop Statement)

Iterate for a constant number of times

/+ int ub = estimatedLoopBound;\
- for (...; condExp; ...) {
+ for (...; --ub > 0; ...) {

4

then fix this IF

81

Automated Program Repair for Security

RUHR
UNIVERSITAT
BOCHUM

RUB

Research Questions

= RQ1 (Fix localization) Can Pendulum find the correct fix locations for the side-channel
vulnerabilities?

= RQ2 (Vulnerability mitigation) To what extent does Pendulum mitigate the side-
channel vulnerabilities?

= RQ3 (Side effect) Does Pendulum preserve the functionality of the program-to-fix?

= RQ4 (Time and space impact) How do the generated patches influence the execution
time of the programs? How large are the patches?

RUHR
Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Evaluation

= focus on timing side-channel vulnerabilities
= secret-dependent unsafe operators, if statements, and loop statements
= 42 subjects taken from QFuzz benchmark and other well-known Java security projects
= e.g., Apache FTPServer, Eclipse Jetty, JDK, OrientDB, Picketbox, Spring-Security, ...
= comparison to DifFuzzAR: DifFuzz-based repair approach
= driver as localizer
= removes early exits (elimination of all return statements but one)
= adapts control-flow (modifies stopping condition, replication of block statements)

RUHR
Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

RQ1: Fix Localization

= we compare the identified fix locations with that of the developer fix for Pendulum and
DifFuzzAR

= Pendulum identifies the fix locations successfully for all 42 subjects
= while DifFuzzAR fails for 13 subjects: limited fix localization supported

RUHR
84 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

RQ2: Vulnerability Mitigation

k Repair K’

timing partitions timing partitions

= compare the number of side-channel partitions between the original program, the
Pendulum-fixed program, and the developer fix

= Pendulum is able to mitigate the vulnerability effectively for 33 of 42 (79%) subjects.

= for 26 of these 33 subjects, Pendulum can entirely eliminate the side-channel
vulnerability

= in contrast, DifFuzzAR can mitigate the vulnerability for only 15 (36%) subjects

85

RUHR
Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

RQ3: Side Effects

EVaRSUITE

Automatic Test Suite Generation for Java

RUHR
86 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

RQ3: Side Effects

Comparison of Pendulum and DifFuzzAR on 42 Subjects

- not all relevant locations are

revealed by collected samples

Semantics Unchanged
Fully Mitigated

Semantics Unchanged
Partially Mitigated

Semantics Unchanged out-of-bound array accesses;
Not Mitigated __--~ loop-related issues
oo —
0 5 10 15 20 25 30

® Pendulum mDifFuzzAR

RUHR
87 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

RQ4: Time and Space Impact

= The Pendulum-generated repairs have an average slowdown of 43% and a median

slowdown of 3%.

= This performance is close to that of the developer fixes.

= QOur median repairs are five lines larger than the original code and six lines larger than

the developer fixes.

Subject Side-Channel Partitions Average Execution Time (msec)
Orig Ppr-1 Ppr-2 Ppr-3 Orig Ppr-1 Ppr-2 Ppr-3
Eclipse_jetty_4 9 2 1 - 17+8 164 16%6 -
rsa_modpow_1717 49 39 21 1 14+ 6 14+3 14+4 20+ 5
rsa_modpow_1964903306 71 39 12 2 | 14+7 144 14+3 187
rsa_modpow_834443 69 62 15 2 | 166 173 A7%£4 225
RUHR
88 Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

Summary: Automated Detection, Quantification,
and Repair of Side-Channel Vulnerabilities

localizing timing side- enables

’ . . TR
1 Decision makingin

channel vulnerabilities /

mltlgatlng them at source Detection of |.qyires Quantification yjyes
code automatica”y side-channel =======p of side-channe| ===

vulnerabilities vulnerabilities
mteg_rates with quantitative DifFuzs QFuzz
fUZZI ng (ICSE’19) (ISSTA’21)

Repair of side-
channel
vulnerabilities

Pendulum
(TOSEM’24)

-
4

supports

f: (Secure) Software :
Engineering /

Developing

secure
software

Reduce vulnerability and
support developer

Trusted Automatic Programming = Trusted Automated Software Engineering

in the context of more and more automated programming:

= explore unified processes/workflows, i.e., bring testing and repair closer together

Fuzzing Shifting Left

89

Automated Program Repair for Security

RUHR
UNIVERSITAT
BOCHUM

RUB

Other things we work on y:
N

: : Automated ‘ Software Testin
= Trusted Automatic Programming Program Repair g
= APRin the era of Large Language Models (LLM) / \
= Agentic Workflows for APR Q
- Repair of Machine Learning models Intelligent Tutoring Machine Le?rning
Systems Analysis

= Human Studies in SE \ﬁ ﬁ/

= Developer surveys: Fuzzing + APR
. . Human Factors
= Intelligent Tutoring Systems in SE

= Simulated Interactive Debugging

RUHR
Automated Program Repair for Security UNIVERSITAT R U B
BOCHUM

CrashRepair: Key Idea

program

/ race
Code Mutation

Crash Location

plausible patches

CrashRepair: Overview

crash
dump

Concol
Execution

Constraint Generator

CFC

Comparison with SOTA

taint flow

enriched tests

Fix Localization

Patch Validator

fix locs

Constraint Translation ‘ Tool # Plausible # Correct
l CrashRepair 29 19 CrashRepair generates a plausible patch for
fix constraints . y - . N
29 without additional information
‘ Patch Generator ‘ SenX 12 3
ExtractFi 5 CrashRepair generates more plausible
candidate patches ractix 12 patches than SenX, ExtractFix and VulnFix
VulnFix 17 9
CrashRepair is more effective than existing
plausible patches CPR 35 9 state-of-the-art for vulnerability repair

evaluated on 41 subjects in VulnLoc benchmark with 1hr timeout

RUHR
UNIVERSITAT
BOCHUM

33 Automated Program Repair for Security

RUB

42 Automated Program Repair for Security

RUHR
UNIVERSITAT
BOCHUM

RUHR
UNIVERSITAT
BOCHUM

46 Automated Program Repair for Security

RUB

Fuzzing for Side-Channels (DifFuzz, ICSE*19)

= key aspect: search for path, for which side-channel observation differs because of

secret values
o

mutated files that showed
(new) interesting behavior

!

2 cost Check:
DDD"" () compute | dierence s |new cos
cost highscor
initial seed files queue soloct & mutate difference| b) program i
o o wiminput "ePeatedly coverage

maximize & = |c(P[pub, sec,]) — c(P[pub, sec,])|

the instrumented program P
pub, sec,, sec,

@ mutant selection by input evaluation for

Pendulum — Repair Workflow rosew2«

Localize
basic block

buggy
code

Localize

source code

Bug D Fix L

patched
Apply

program | QFuzz
fix patterns again

Patch Generation ' Patch Validation

RQ3: Side Effects

Comparison of Pendulum and DifFuzzAR on 42 Subjects

Semantics Unchanged
Fully Mitigated -

not all relevant locations are
Semantics Unchanged revealed by collected samples
Partially Mitigated

Semantics Unchanged

out-of-bound array accesses;
Not Mitigated X

__--=" loop-related issues

I R

Semantics Changed

0 5 10 15 20 25 30
= Pendulum = DifFuzzAR

60 Automated Program Repair for Security

wher RUB

75 Automated Program Repair for Security

RUHR
UNIVERSITAT
BOCHUM

88 Automated Program Repair for Security

RUHR
UNIVERSITAT
BOCHUM

Prof. Dr. Yannic Noller
yannic.noller@rub.de
https://yannicnoller.qgithub.io/

Automated Program Repair for Security

RUHR
UNIVERSITAT
BOCHUM

https://yannicnoller.github.io/

