= Trusted Automatic Programming

= Trusted Automated Software Engineering
RUHR-UNIVERSITAT BOCHUM = Fuzzing Shifting Left

Testing and Repair

— The path to pro-active software resilience

21.02.2025 — itestra GmbH Prof. Dr. Yannic Noller
Software Quality group

Software Quality Research @ RUB

developing new repair exploring and designing
techniques to aid developers (hybrid) testing techniques
in fixing program bugs /\ to systematically generate
Automated test inputs that expose

Program Repair Software Testing

/ how to help CS students \ / \
learn programming by
applying concepts from
automated testing and Intelligent Tutoring Machine Learning
repair to guide the students Systems Analysis

_ toward the right solution) automated analysis, testing,
\ / and repairing of machine
learning models

studying developer needs and H Fact
requirements for successful deployment uman Factors

of testing and repair techniques in in SE | |
development practice https://informatik.rub.de/en/sq/

incorrect program behavior

RUHR

4 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B
BOCHUM

https://informatik.rub.de/en/sq/

Do you trust software?

RUHR

5 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B
BOCHUM

Failures because of Software Bugs

. o https://www.computerworld.com/article/3412197/top-software-failures-in-recent-history
https://spectrum.ieee.org/aerospace/aviation/how-the-
boeing-737-max-disaster-looks-to-a-software-developer

RUHR
6 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B
BOCHUM

“bug fixing is not easy and takes time” -

30,000

25,000

20,000

15,000

10,000

5,000

0

Number of Disclosed Vulnerabilities

2017

2018 2019 2020

2022 Risk Based Security, Inc

200.3

high
256.2
medium
282.5

low

374.7

0 100 200 300
Number of Days

Time to Fix by Risk Category
2021 NTT Application Security

7

Testing and Repair — The path to pro-active software resilience

RUHR
UNIVERSITAT
BOCHUM

Automated Testing and Repair

“Provide reliable, trustworthy, and secure software systems.”

....................
l..
LN |
Ny
Ny

...

am

.
wet®
e
v’
"

Human-Guided
Software
Engineering

(Potentially) Automated
Faulty So_ftwar_e
Application Engineering

Patched
Application

RUHR
8 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B
BOCHUM

9

Pro-active Software Resilience

How to bring testing

and repair closer

together?

)
Software Software |
"@" J

Testing and Repair — The path to pro-active software resilience

RUHR
UNIVERSITAT
BOCHUM

RUB

What is a Side-Channel Vulnerability?

RUHR

10 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B
BOCHUM

Potential Side-Channel Leakages

By David B. Gleason from Chicago, IL - The Pentagon, CC BY-SA 2.0,
https://commons.wikimedia.org/w/index.php?curid=4891272

RUHR
11 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B
BOCHUM

Side-Channel Analysis

A leakage of secret data o boolean pwcheck_unsafe (byte[] pub, byte[] sec) {
Q software side-channels 1 if (pub.length I= sec.length) {
) 2 return false;
U observables: .
" executiontime . for(inti=0;i< pub.length; i++) {
= memory consumption 5 if (oubli] != sec]i]) {
= response size 6 return false;
» network traffic ’ } }
8
. 9 return true;
10 }
Where do we find them?
- conditional early return
O application code, e.g., Apache Tomcat, FtpServer, ... causes leakage
Q security libraries, e.qg., JDK, spring security, Bouncy Castle, ...

RUHR
12 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B
BOCHUM

Differential Software Testing

= identify behavioral differences

P 4 behavior4 h behavior4
IZI program P ? program P ?_
input A [g _
: ||_l|“ — Ll &8
— | ——fp | |n y -y | ———— | —)p | |n
_— behaviorz inputs E— behaviorz
program P’ program P

RUHR
13 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B
BOCHUM

14

Differential Software Testing

= identify behavioral differences

for the same program with two
different inputs
= security, reliability

for example,
= Worst-Case Complexity Analysis
= Side-Channel Analysis

= Robustness Analysis of Neural
Network

Testing and Repair — The path to pro-active software resilience

[x]—

input4

[V]—

inputz

program P

program P

ANl

behavior4

D1l 88
behaviorz

=~

RUHR
UNIVERSITAT
BOCHUM

RUB

Path to Side-Channel Repair

/ \
enables { Decision making in
, (Secure) Software :
\ Engineering /
N . e D L. ’
Detection of ,quires Quantification e Repair of side- ¢,pports Developing
side-channe| === of side-channe| === channel — secure
vulnerabilities vulnerabilities vulnerabilities software
DifFuzz QFuzz Pendulum
(ICSE’19) (ISSTA’21) (TOSEM’24) Reduce vulnerability and }
support developer

RUHR
15 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B
BOCHUM

Path to Side-Channel Repair

’ .. N
enables { Decision making in
, (Secure) Software :
' Engineering /
Detection of ,quires Quantification e Repair of side- ¢pports Developing
side-channe|l === of side-channe| == channel —— secure
vulnerabilities vulnerabilities vulnerabilities software
DifFuzz QFuzz Pendulum
ISSTA21 TOSEM’24 Reduce vulnerability and
(ICSE,1 9) () () support developer

|

RUHR
16 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B

BOCHUM

2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)

DirFuzz: Differential Fuzzing for Side-Channel
Analysis

Shirin Nilizadeh*

Yannic Noller*

Corina S. Pésdreanu

University of Texas at Arlington Humboldt-Universitiit zu Berlin Carnegie Mellon University Silicon Valley,

Arlington, TX, USA
shirin.nilizadeh @uta.edu

Abstract—Side-channel attacks allow an adversary to uncover
secret program data by observing the behavior of a program

Berlin, Germany
yannic.noller@hu-berlin.de

NASA Ames Research Center
Moffett Field, CA, USA

Given a program whose inputs are partitioned into public and
secret variables, DIFFUZZ uses a form of differential fuzzing

with respect to a such as ion time,

memory or response size. Side-channel vulnerabilities are difficult
to reason about as they involve analyzing the correlations
b usage over iple program paths. We present
Di1FFuzz, a fuzzing-based approach for ing side-ch: 1
vulnerabilities related to time and space. DIFFUZZ automatically
detects these vulnerabilities by analyzing two versions of the
program and using resource-guided heuristics to find inputs that
maximize the difference in resource consumption between secret-
dependent paths. The methodology of DIFFUZZ is general and
can be applied to programs written in any language. For this
paper, we present an implementation that targets analysis of
JAVA programs, and uses and extends the KELINCI and AFL
fuzzers. We evaluate DIFFUZZ on a large number of JAvA
programs and demonstrate that it can reveal unknown side-
channel vulnerabilities in popular applications. We also show that
DIFFUZZ compares favorably against BLAZER and THEMIS, two
state-of-the-art analysis tools for finding side-channels in JAvA

to autc ically find program inputs that reveal side chan-
nels related to a specified resource, such as time, consumed
memory, or response size. We focus specifically on timing and
space related vulnerabilities, but the approach can be adapted
to other types of side channels, including cache based.
Differential fuzzing has been successfully applied before for
finding bugs and vulnerabilities in a variety of applications,
such as LF and XZ parsers, PDF viewers, SSL/TLS libraries,
and C compilers [36], [38], [41]. However, to the best of
our knowledge, we are the first to explore differential fuzzing
for side-channel analysis. Typically such fuzzing techniques
analyze different versions of a program, attempting to discover
bugs by observing differences in execution for the same
inputs. In contrast DIFFUZZ works by analyzing two copies
of the same program, with the same public inputs but with

uses differential fuzzing to
automatically find side-channel
vulnerabilities

outperforms static analysis
techniques

applies on system level

cannot tell how severe a
vulnerability might be

published at ICSE2019

S. Nilizadeh, Y. Noller and C. S. Pasareanu, "DifFuzz: Differential Fuzzing for Side-Channel Analysis”, ICSE’2019,
https://doi.org/10.1109/ICSE.2019.00034

17

Testing and Repair — The path to pro-active software resilience

RUHR
UNIVERSITAT
BOCHUM

https://doi.org/10.1109/ICSE.2019.00034

Background - Fuzzing

RUHR
18 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B
BOCHUM

Greybox Fuzzing

e DD mutated files that showed fuzzing driver
(new) interesting behavior

I:IE":I . I:"jlj = CB- e —> output Check for new
\ ;| parse execute | : coverage or

initial seed files queue select & mutate input program P| : program program crashes
0 e trim input repeatedly : : coverage or timeouts

e mutant selection by input evaluation for
the instrumented program P

RUHR
19 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B
BOCHUM

Side-Channel Analysis (ontinueq)

secure if the secret data can not be inferred by an attacker through their observations of
the system (aka non-interference)

can be solved by self-composition [Barthe2004]
program execution P[pub, sec,]
cost observation c(P[pub, sec,])
two secretvalues c(P|[pub,sec;]) c(P|pub,sec,])
equivalence C(P :pub, Seclj) = C(P [pub, SeCZ])

V pub, secq, sec,: c(P[pub,sec,]) = c(P[pub, sec,])

Barthe, G., D’Argenio, P. R., & Rezk, T. “Secure information flow by self-composition”, IEEE Computer Security
Foundations Workshop, 2004.

RUHR
20 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B
BOCHUM

Fuzzing for Side-Channels (DifFuzz, ICSE“19)

key aspect: search for path, for which side-channel observation differs because of

secret values
Ijl:l mutated files that showed
@ (new) interesting behavior

c(st, y),
Pls1, y] % a) cost
@O0 @]]
! ——

- - input

tial d fil i
initial seed files queue seloct & rem:;?;zl . /7 difference| b) Eg\)/g:zme

a e trim input P y 2 c(sz, y), 9

e e cove

Check:

new cost
highscore or
improved
coverage

maximize J = |c (P [PUb; S ecl]) —C (P [pub’ se Cz])l e mutant selection by input evaluation for

the instrumented program P
pub, secy, sec,

RUHR
21 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B

BOCHUM

o boolean pwcheck_unsafe (byte[] pub, byte[] sec) {
1 if (pub.length != sec.length) {
2 return false;
Example Results)
4 for (inti = 0; i < pub.length; i++) {
if (publi] != sec]i
Initial Input: costoir = 0 : oo
7 }
secret: = [72, 101, 108, 108, 111, 32, 67] g }
secret2 = [97, 114, 110, 101, 103, 105, 101] 9 return true;
public = [32, 77, 101, 108, 108, 111, 110] 10 }

costoif > 0 after ~ 5 sec

Input with highscore costoif = 47 after ~ 69 sec
(maximum length = 16 bytes):

secret: = [72, 77, -16, -66, -48, -48, -48, -48, -28, 0, 100, O, O, O, O, -48]
secret2 = [-48, -4, -48, 7, 17, 0, -24, -48, -48, le6, -48, -3, 108, 72, 32, 0]
public = [-48, -4, -48, 7, 17, 0, -24, -48, -48, 16, -48, -3, 108, 72, 32, 0]

RUHR

22 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B
BOCHUM

Is there a vulnerability?

<~

How much information can be leaked?

RUHR

23 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B
BOCHUM

Path to Side-Channel Repair

’ N
enables { Decision making in
, (Secure) Software :
' Engineering /
Detection of ,quires Quantification e Repair of side- ¢pports Developing
side-channe| === of side-channe| == channel — secure
vulnerabilities vulnerabilities vulnerabilities software
DifFuzz QFuzz Pendulum
ICSE’'19 TOSEM’24 Reduce vulnerability and
() (ISSTA,21) () support developer

|

RUHR
24 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B

BOCHUM

Yannic Noller
yannic.noller@acm.org
National University of Singapore
Singapore

ABSTRACT

Side channels pose a significant threat to the confidentiality of
software systems. Such vulnerabilities are challenging to detect
and evaluate because they arise from non-functional properties of
software such as execution times and require reasoning on multi-
ple execution traces. Recently, noninterference notions have been
adapted in static analysis, symbolic execution, and greybox fuzzing

1 However, interference is a strict notion and may
reject security even if the strength of information leaks are weak. A
quantitative notion of security allows for the relaxation of noninter-
ference and tolerates small (unavoidable) leaks. Despite progress in
recent years, the existing quantitative approaches have scalability
limitations in practice.

In this work, we present QFuzz, a greybox fuzzing technique to
quantitatively evaluate the strength of side channels with a focus
on min entropy. Min entropy is a measure based on the number
of distinguishable observations (partitions) to assess the resulting
threat from an attacker who tries to compromise secrets in one try.
We develop a novel greybox fuzzing equipped with two partitioning
algorithms that try to maximize the number of distinguishable
observations and the cost differences between them.

We evaluate QFuzz on a large set of benchmarks from existing
work and real-world libraries (with a total of 70 subjects). QFuzz

L))
s QFuzz: Quantitative Fuzzing for Side Channels

Saeid Tizpaz-Niari
saeid@utep.edu
University of Texas at El Paso
USA

KEYWORDS

vulnerability detection, side-channel analysis, quantification, dy-
namic analysis, fuzzing

ACM Reference Format:

Yannic Noller and Saeid Tizpaz-Niari. 2021. QFuzz: Quantitative Fuzzing
for Side Channels. In Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA "21), July 11-17, 2021,
Virtual, Denmark. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3460319.3464817

1 INTRODUCTION

Side-channel (SC) vulnerabilities allow attackers to compromise se-
cret information by observing runtime behaviors such as response
time, cache hit/miss, memory consumption, network packet, and
power usage. Software developers are careful to prevent malicious
eavesdroppers from accessing secrets using techniques such as en-
cryption. However, these techniques often fail to guarantee security
in the presence of side channels since they arise from non-functional
behaviors and require simul ing over multiple runs.

Side-channel attacks remain a challenging problem even in se-
curity-critical applications. There are known practical side-channel
attacks against the RSA algorithm [7], an online health system [10],
the Google’s Keyczar Library [24], and the Xbox 360 [37]. In the

uses greybox fuzzing to
quantitatively evaluate the
strength of side channels

focuses on min entropy

explores two partitioning
algorithms that try to maximize
the number of distinguishable
observations

cannot localize the vulnerability
published at ISSTA2021

Yannic Noller and Saeid Tizpaz-Niari, “QFuzz: quantitative fuzzing for side channels”, ISSTA 2021
https://doi.org/10.1145/3460319.3464817

25 Testing and Repair — The path to pro-active software resilience

RUHR
UNIVERSITAT
BOCHUM

https://doi.org/10.1145/3460319.3464817

26

Timing SC Vulnerability: An Example

P C‘fxxxxx”) : 1ms
P (sxxxxx) ! 2ms
'09 inwith - 7Ny e,
‘sesame” P (sexxxx 3ms i
_
o
o
P (“sesame”) ms i
RUHR
Testing and Repair — The path to pro-active software resilience UNIVERSITAT
BOCHUM

RUB

Timing SC Vulnerability: Quantification

publicnpt >

O °
°

.

é@ b

RUHR

27 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B
BOCHUM

Qu antification (QFuzz, ISSTA19)

How to identify
such inputs?

mutated files that showed
(new) interesting behavior

fuzzing driver

How to characterize
observation classes?

1 :'A' I

5 .

Fuzzing SO P N

. check for
[| \ D \ @-> parse [_»{Pfs,, y] compute distance & | 0oved
initial seed fil input partitions partitioning
ses g e e Iz | e
Plsi, y] | /o)

Mmaxs,, . . sgy |Parte(c(s1,¥), s (S, YN+ (1 — 3_0'1*5)
L)L J

T
Maximize number
of partitions

T

Maximize the difference
between the partitions

28 Testing and Repair — The path to pro-active software resilience

e mutant selection by input evaluation for
the instrumented program P

Partioning c(st1,y)
Algorithm cls2, y) > P
KDynamic & c(ss, y)
Greedy clse, y) > P2
RUHR
UNIVERSITAT RUB

BOCHUM

QFuzz: Workflow

e I‘_‘"j mutated files that showed fuzzing driver
(new) interesting behavior
P[s1, V] cls1,y), a) #partitions k
] ’ COV1 : .
2 : b) minimum
&_ : : distance & .CheCk for
> - \k > -I»»E!oarse P[SQ,Y] géﬁ;y% cx)nqpute é |n1provexj
initial seed files queue trim nout mutate input : partitions c) program partitioning
a amInput — epeatediy coverage | OF coverage
L2 © @ Plsk, y1|,/%6. v
COVk

e mutant selection by input evaluation for
maxs, sy |Parte(c(sy,y), ..., c(sg, Y|+ (1 — e701%9) the instrumented program P
\)

Maximize number Maximize the difference

of partitions between the partitions
. . RUHR
29 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B
BOCHUM

Exam p I e (K=100, =1, length=16, count=bytecode-instruction)

stringEquals (Original Jetty, v1) stringEquals (Current Jetty, v4)

boolean stringEquals(String s1, String s2) { boolean stringEquals(String s1, String s2) {
if (s1 == s2) if (s1 == s2) return true;
K_1 7 return true; if (s1 == null || s2 == null) K_g
-_ if (s1 == null || s2 == null || return false; ==
6_3 s1.length() != s2.length()) boolean result = true; 6 _1
- return false; int 11 = s1.length(); -
for (int i = 0; i < sl.length(); ++i) int 12 = s2.length();
if (sl1.charAt(i) != s2.charAt(i)) for (int i = 0; i < 12; ++i)
return false; result &= s1.charAt(i%1l1) == s2.charAt(i));
return true; return result && 11 == 12;
3 3
stringEquals (Safe Jetty, v5) Equals (Unsafe Spring-Security)
boolean stringEquals(String s1, String s2) { boolean Equals(String s1, String s2) {
if (s1 == s2) return true; if (s1 == null || s2 == null)
if (s1 == null || s2 == null) return false;
return false; byte[] s1B = s1.getBytes("UTF-8");
int 11 = s1.length(); byte[] s2B = s2.getBytes("UTF-8"); DifFuzz
K—1 int 12 = s2.length(); int lenl = s1B.length; oA
-_ if(l2 == @){return 11 == 0} int len2 = s2B.length; -
int result |= 11 - 12; if (lenl != len2)
for (int i = 0; i < 12; ++i){ return false;
int r = ((i - 11) >>> 31) % i; int result = 0; I
result |= s1.charAt(r) * s2.charAt(i); for (int i = 0; i < len2; i++) only leaks
3} result |= s1B[i] * s2B[i]; .
return result == 0; return result == 0; eXIStence Of
’ . special character

RUHR
30 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B
BOCHUM

How much information can be leaked?

<~

How can we fix the issue?

RUHR

31 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B
BOCHUM

Path to Side-Channel Repair

/ . . . \
enables { Decision making in
, (Secure) Software :
' Engineering /
Detection of ,quires Quantification e Repair of side- ¢pports Developing
side-channe|l === of side-channe| == channel ——] secure
vulnerabilities vulnerabilities vulnerabilities software
DifFuzz QFuzz Pendulum
ICSE’'19 ISSTA21 ’ Reduce vulnerability and
() () (TOSEM 24) support developer

|

RUHR
32 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B

BOCHUM

= uses collected observations

from QFuzz to localize the

«se Timing Side-Channel Mitigation via Automated Vu|nerabi|ity
Program Repair

= applies (safe) operators to
NI GBI R S s e transform the source code

SAEID TIZPAZ-NIARI, University of Texas at El Paso, El Paso, TX, USA

SUDIPTA CHATTOPADHYAY, Singapore University of Technology and Design, = Ccan i n t ro d uce s i d e —eﬁe CtS
Singapore, Singapore
ABHIK ROYCHOUDHURY, National University of Singapore, Singapore, Singapore

Side-channel vulnerability detection has gained prominence recently due to Spectre and Meltdown attacks. . .

Techniques for side—channyel detection ranie frompfuzz testing to program analypsis and program composition. = p u bI IS h ed I n TO S E M 2 024
Existing side-channel mitigation techniques repair the vulnerability at the IR/binary level or use runtime moni-
toring solutions. In both cases, the source code itself is not modified, can evolve while keeping the vulnerability,
and the developer would get no feedback on how to develop secure applications in the first place. Thus, these
solutions do not help the developer understand the side-channel risks in her code and do not provide guidance
to avoid code patterns with side-channel risks. In this article, we present PENDULUM, the first approach for
automatically locating and repairing side-channel vulnerabilities in the source code, specifically for timing
side channels. Our approach uses a quantitative estimation of found vulnerabilities to guide the fix localization,
which goes hand-in-hand with a pattern-guided repair. Our evaluation shows that PENDULUM can repair

alarese number of side-channel vulnerabilities in real-world anplications. Overall. our anproach intecrates

Haifeng Ruan, Yannic Noller, Saeid Tizpaz-Niari, Sudipta Chattopadhyay, and Abhik Roychoudhury. “Timing Side-
Channel Mitigation via Automated Program Repair’, TOSEM 2024. https://doi.org/10.1145/3678169

RUHR
33 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B
BOCHUM

https://doi.org/10.1145/3678169

34

SC Re pal r Workflow (Pendulum, TOSEM‘24)

QFuzz

Bug Detection

Localize
basic block

buggy
block

A\ 4

Localize
source code

buggy
code

Fix Localization

Testing and Repair — The path to pro-active software resilience

Apply
fix patterns

patched
program

Patch Generation

| QFuzz
again

RUHR
UNIVERSITAT
BOCHUM

Patch Validation

RUB

Fix Localization (Basic Block)
Compare traces to find where they diverge

F)
P(y,sz) ae fg EXIT

RUHR
35 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B
BOCHUM

Fix Localization (Basic Block)

Compare traces to find where they

e ,’
i = /
| P(y,s;):abcd fhEXIT i '
l
e N .
| diverge at ¢ =---> :
i convergeatd | __ | . e '
] . =——
{__(post-dominator of) = § i converge at EXIT |
DOTON i (post-dominator of f) i
i diverge at f E—---*\\ g A
——————————————— ‘\ ,,’
S Lh l EXIT
——— >
. . . RUHR .
36 Testing and Repair — The path to pro-active software resilience gg!}\ll-lEURl\?ITAT RUB

Fix Localization (Source Code)

Map conditional branches to source code

/ Byteco@

Branches
/Source Code \
e Map 1. If Statement
I 2. Loop Statements
g Debug Info for, while, do...while
3. Unsafe Operators
> <, >= <= == 1= &&, ||, ?:
: l N L

e

RUHR
37 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B
BOCHUM

Automated Program Repair

Buggy program Code corpus
Fault localization . Learning-based
Search-based *== - Semantic Repair
Repair I Repair .
= | earning/Interference
Generate patch Passing & Extract l
candidates failing tests ™ constraints
'l 1 Model of patches
¥ v l
Validate patch Code Synthesise code via
candidates transformations constraint solving Predict patch
Patch

State-of-the-art in Program Repair: Pictorial view derived from Communications of the ACM article 2019.

https://nus-apr.github.io/

RUHR
38 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B
BOCHUM

Path to Side-Channel Repair

/ \
enables { Decision making in
, (Secure) Software :
\ Engineering /
N . e D L. ’
Detection of ,quires Quantification e Repair of side- ¢pports Developing
side-channe| === of side-channe| === channel — secure
vulnerabilities vulnerabilities vulnerabilities software
DifFuzz QFuzz Pendulum
(ICSE’19) (ISSTA’21) (TOSEM’24) Reduce vulnerability and }
support developer

RUHR
39 Testing and Repair — The path to pro-active software resilience UNIVERSITAT R U B
BOCHUM

Other things we work on

= Trusted Automatic Programming
= APRin the era of Large Language Models (LLM)
= Agentic Workflows for APR
= Repair of Machine Learning models
= Human Studies in SE
= Developer surveys: Fuzzing + APR
= |ntelligent Tutoring Systems
= Simulated Interactive Debugging

N
A_—

Automated _
Program Repair ~ Software Testing

/ \
@

Intelligent Tutoring Machine Learning
Systems Analysis

NG § 4

Human Factors
in SE

40

Testing and Repair — The path to pro-active software resilience

RUHR
UNIVERSITAT
BOCHUM

‘" Decisi Kingin
enables N ecision making in
(Secure) Software :

The path to pro-active —

Detection of .quires Quantification e Repair of side-

supports Developing
== side-channe|l === of side-channe| =) channel e secure
s O twa re res I I e n ce vulnerabilities vulnerabilities vulnerabilities software
DifFuzz QFuzz Pendulum
(ICSE’19) (ISSTA’21) (TOSEM’24)
3 . fuzzing driver
. - mutated files that showed
Side-Channel Ana|y5|s (continued) o] DD (new) interestin; B o
1
secure if the secret data can not be inferred by an attacker through their observations of l
the system (aka non-interference)

gf,s\;“ g 2) #partiions k
> - (ﬁ— —»‘ g ’ - b mlnlmum check for
can be solved by self-composition [Barthe2004] DDD ‘ \ I ﬁy)“ — .

— improved

program execution P [pub, Secl] initial seed files queue trim input mutate input : partitions c) program gra';tgi/oer;i:ge
repeatedly coverage
cost observation ¢(P[pub, sec;]) o 2] o o oo
two secret values ¢ (P [pub' Secl]) C(P [pub' SeCZ]) e mutant selection by input evaluation for
equivalence C(P [pub, secl]) = C(P [pub, SBCZ]) maxs, sy [Parte(c(sy,y), ... c(sg,)|+ (1 — e 01+8) the instrumented program P
\)
Y Y
V pub, secy, secy: c(P[pub,sec;]) = c(P[pub, sec,]) Maximize number e e oo
: : Automifed | oo Prof. Dr. Yannic Noller
Trusted Automatic Programming

yannic.noller@rub.de
https://yannicnoller.qgithub.io/

Trusted Automated Software Engineering
Fuzzing Shifting Left m\ /

RUHR .
Human Factors UNIVERSITAT
in SE BOCHUM

https://yannicnoller.github.io/

