
21.02.2025 – itestra GmbH

Testing and Repair
– The path to pro-active software resilience

Prof. Dr. Yannic Noller
Software Quality group

§ Trusted Automatic Programming
§ Trusted Automated Software Engineering
§ Fuzzing Shifting Left

im Menü über:
Start > Absatz >

Listenebene

Software Quality Research @ RUB

Testing and Repair – The path to pro-active software resilience4

Automated
Program Repair

Machine Learning
Analysis

Software Testing

Human Factors
in SE

Intelligent Tutoring
Systems

https://informatik.rub.de/en/sq/

developing new repair
techniques to aid developers

in fixing program bugs

automated analysis, testing,
and repairing of machine

learning models

exploring and designing
(hybrid) testing techniques
to systematically generate

test inputs that expose
incorrect program behavior

how to help CS students
learn programming by

applying concepts from
automated testing and

repair to guide the students
toward the right solution

studying developer needs and
requirements for successful deployment

of testing and repair techniques in
development practice

https://informatik.rub.de/en/sq/

im Menü über:
Start > Absatz >

Listenebene

Testing and Repair – The path to pro-active software resilience5

Do you trust software?

im Menü über:
Start > Absatz >

Listenebene

Testing and Repair – The path to pro-active software resilience6

https://spectrum.ieee.org/aerospace/aviation/how-the-
boeing-737-max-disaster-looks-to-a-software-developer

https://www.computerworld.com/article/3412197/top-software-failures-in-recent-history

Failures because of Software Bugs

im Menü über:
Start > Absatz >

Listenebene

Testing and Repair – The path to pro-active software resilience7

“bug fixing is not easy and takes time”

2022 Risk Based Security, Inc
Number of Disclosed Vulnerabilities

2021 NTT Application Security
Time to Fix by Risk Category

im Menü über:
Start > Absatz >

Listenebene

Automated Testing and Repair

Testing and Repair – The path to pro-active software resilience8

Software
Testing

Software
RepairBug Patch

Hybrid
Techniques Fuzzing Symbolic

Execution
Constraint

Solving
Static

Analysis
Program
Synthesis LLM

(Potentially)
Faulty

Application
Patched

Application

“Provide reliable, trustworthy, and secure software systems.”

Automated
Software

Engineering

Human-Guided
Software

Engineering

Contributing to the portfolio of foundations, methods,
techniques, and open-source tools to accomplish this goal.

im Menü über:
Start > Absatz >

Listenebene

Pro-active Software Resilience

Testing and Repair – The path to pro-active software resilience9

Software
Testing

Software
RepairBug Patch

(Potentially)
Faulty

Application
Patched

Application

How to bring testing
and repair closer

together?

im Menü über:
Start > Absatz >

Listenebene

What is a Side-Channel Vulnerability?

Testing and Repair – The path to pro-active software resilience10

im Menü über:
Start > Absatz >

Listenebene

Potential Side-Channel Leakages

Testing and Repair – The path to pro-active software resilience11

By David B. Gleason from Chicago, IL - The Pentagon, CC BY-SA 2.0,
https://commons.wikimedia.org/w/index.php?curid=4891272

im Menü über:
Start > Absatz >

Listenebene

Side-Channel Analysis

Testing and Repair – The path to pro-active software resilience12

q leakage of secret data
q software side-channels
q observables:

§ execution time
§ memory consumption
§ response size
§ network traffic
§ …

Where do we find them?
q application code, e.g., Apache Tomcat, FtpServer, …
q security libraries, e.g., JDK, spring security, Bouncy Castle, …

0 boolean pwcheck_unsafe (byte[] pub, byte[] sec) {
1 if (pub.length != sec.length) {
2 return false;
3 }
4 for (int i = 0; i < pub.length; i++) {
5 if (pub[i] != sec[i]) {
6 return false;
7 }
8 }
9 return true;
10 }

conditional early return
causes leakage

im Menü über:
Start > Absatz >

Listenebene

Differential Software Testing
➥ identify behavioral differences

Testing and Repair – The path to pro-active software resilience13

input1

program P

input2

program P

2

=?
behavior1

behavior2

x

y
input

program P

program P’

1

=?
behavior1

behavior2

x

im Menü über:
Start > Absatz >

Listenebene

Differential Software Testing
➥ identify behavioral differences

Testing and Repair – The path to pro-active software resilience14

input1

program P

input2

program P

2

=?
behavior1

behavior2

x

y
input

program P

program P’

1

=?
behavior1

behavior2

x

§ for the same program with two
different inputs
➥ security, reliability

§ for example,
§ Worst-Case Complexity Analysis
§ Side-Channel Analysis
§ Robustness Analysis of Neural

Network

im Menü über:
Start > Absatz >

Listenebene

Path to Side-Channel Repair

Testing and Repair – The path to pro-active software resilience15

Detection of
side-channel
vulnerabilities

Quantification
of side-channel
vulnerabilities

Repair of side-
channel

vulnerabilities

Developing
secure
software

Decision making in
(Secure) Software

Engineering

requires drives

enables

supports

Reduce vulnerability and
support developer

DifFuzz
(ICSE’19)

QFuzz
(ISSTA’21)

Pendulum
(TOSEM’24)

im Menü über:
Start > Absatz >

Listenebene

Path to Side-Channel Repair

Testing and Repair – The path to pro-active software resilience16

Detection of
side-channel
vulnerabilities

Quantification
of side-channel
vulnerabilities

Repair of side-
channel

vulnerabilities

Developing
secure
software

Decision making in
(Secure) Software

Engineering

requires drives

enables

supports

Reduce vulnerability and
support developer

DifFuzz
(ICSE’19)

QFuzz
(ISSTA’21)

Pendulum
(TOSEM’24)

im Menü über:
Start > Absatz >

Listenebene

§ uses differential fuzzing to
automatically find side-channel
vulnerabilities

§ outperforms static analysis
techniques

§ applies on system level
§ cannot tell how severe a

vulnerability might be
§ published at ICSE‘2019

Testing and Repair – The path to pro-active software resilience17

S. Nilizadeh, Y. Noller and C. S. Pasareanu, "DifFuzz: Differential Fuzzing for Side-Channel Analysis”, ICSE’2019,
https://doi.org/10.1109/ICSE.2019.00034

https://doi.org/10.1109/ICSE.2019.00034

im Menü über:
Start > Absatz >

Listenebene

Background – Fuzzing

Testing and Repair – The path to pro-active software resilience18

im Menü über:
Start > Absatz >

Listenebene

Greybox Fuzzing

Testing and Repair – The path to pro-active software resilience19

initial seed files

1
queue

2
select &

trim input

3

mutate
repeatedly

4

mutated files that showed
(new) interesting behavior6

5 mutant selection by input evaluation for
the instrumented program P

parse
input

execute
program P

Check for new
coverage or
program crashes
or timeouts

fuzzing driver

output

program
coverage

im Menü über:
Start > Absatz >

Listenebene

Side-Channel Analysis (continued)

§ secure if the secret data can not be inferred by an attacker through their observations of
the system (aka non-interference)

§ can be solved by self-composition [Barthe2004]

Testing and Repair – The path to pro-active software resilience20

Barthe, G., D’Argenio, P. R., & Rezk, T. “Secure information flow by self-composition”, IEEE Computer Security
Foundations Workshop, 2004.

! " #$%, '(!! = !(" #$%, '(!")
∀	#$%, '(!!, '(!": 	! " #$%, '(!! = !(" #$%, '(!")

! " #$%, '(!! 	 !(" #$%, '(!")
! " #$%, '(!!
" #$%, '(!!program execution

cost observation

two secret values

equivalence

im Menü über:
Start > Absatz >

Listenebene

Fuzzing for Side-Channels (DifFuzz, ICSE‘19)

§ key aspect: search for path, for which side-channel observation differs because of
secret values

Testing and Repair – The path to pro-active software resilience21

initial seed files

1
queue

2
mutate

repeatedly
4

mutated files that showed
(new) interesting behavior6

parse
input

5 mutant selection by input evaluation for
the instrumented program P

P[s1, y] Check:
new cost
highscore or
improved
coverage

compute
cost

difference
P[s2, y]

a) cost
difference !

b) program
 coverage

c(s1, y),
cov1

c(s2, y),
cov2

! = # $ %&',)*#! − # $ %&',)*#"

select &
trim input

3

maximize
!"#, %&'! , %&'"

im Menü über:
Start > Absatz >

Listenebene

Testing and Repair – The path to pro-active software resilience22

Example Results
Initial Input:

secret1 = [72, 101, 108, 108, 111, 32, 67]
secret2 = [97, 114, 110, 101, 103, 105, 101]
public1 = [32, 77, 101, 108, 108, 111, 110]

secret1 = [72, 77, -16, -66, -48, -48, -48, -48, -28, 0, 100, 0, 0, 0, 0, -48]
secret2 = [-48, -4, -48, 7, 17, 0, -24, -48, -48, 16, -48, -3, 108, 72, 32, 0]
public1 = [-48, -4, -48, 7, 17, 0, -24, -48, -48, 16, -48, -3, 108, 72, 32, 0]

costDiff > 0 after ~ 5 sec

Input with highscore costDiff = 47 after ~ 69 sec
(maximum length = 16 bytes):

costDiff = 0

0 boolean pwcheck_unsafe (byte[] pub, byte[] sec) {
1 if (pub.length != sec.length) {
2 return false;
3 }
4 for (int i = 0; i < pub.length; i++) {
5 if (pub[i] != sec[i]) {
6 return false;
7 }
8 }
9 return true;
10 }

im Menü über:
Start > Absatz >

Listenebene
Is there a vulnerability?

⇔
How much information can be leaked?

Testing and Repair – The path to pro-active software resilience23

im Menü über:
Start > Absatz >

Listenebene

Path to Side-Channel Repair

Testing and Repair – The path to pro-active software resilience24

Detection of
side-channel
vulnerabilities

Quantification
of side-channel
vulnerabilities

Repair of side-
channel

vulnerabilities

Developing
secure
software

Decision making in
(Secure) Software

Engineering

requires drives

enables

supports

Reduce vulnerability and
support developer

DifFuzz
(ICSE’19)

QFuzz
(ISSTA’21)

Pendulum
(TOSEM’24)

im Menü über:
Start > Absatz >

Listenebene

§ uses greybox fuzzing to
quantitatively evaluate the
strength of side channels

§ focuses on min entropy
§ explores two partitioning

algorithms that try to maximize
the number of distinguishable
observations

§ cannot localize the vulnerability
§ published at ISSTA‘2021

Testing and Repair – The path to pro-active software resilience25

Yannic Noller and Saeid Tizpaz-Niari, “QFuzz: quantitative fuzzing for side channels”, ISSTA 2021
https://doi.org/10.1145/3460319.3464817

https://doi.org/10.1145/3460319.3464817

im Menü über:
Start > Absatz >

Listenebene

Timing SC Vulnerability: An Example

Testing and Repair – The path to pro-active software resilience26

“fxxxxx” 1ms

“sxxxxx” 2ms

“sexxxx” 3ms

“sesame” 7ms

log in with
“sesame”

im Menü über:
Start > Absatz >

Listenebene

Timing SC Vulnerability: Quantification

Testing and Repair – The path to pro-active software resilience27

!! "!

!" ""

!# "#

!$ "$

public input
#

im Menü über:
Start > Absatz >

Listenebene

Quantification (QFuzz, ISSTA‘19)

Testing and Repair – The path to pro-active software resilience28

QFuzz: Workflow
Research Problem State of the Art Our Solution Example Evaluation Summary

yannic.noller@acm.org
saeid@utep.edu 8QFuzz: Quantitative Fuzzing for Side Channels

initial seed files

1
queue

2
trim input

3

mutate
repeatedly

4

mutated files that showed
(new) interesting behavior6

parse
input

5 mutant selection by input evaluation for
the instrumented program P

P[s1, y]
check for
improved
partitioning
or coverage

compute
partitions

P[s2, y]

P[sk, y]

a) #partitions k
b) minimum

distance !

c) program
coverage

…

c(s1, y),
cov1

c(s2, y),
cov2

c(s3, y),
covk

fuzzing driver

!"#!!,…,!",$ $"%&%(()&, + , … , ()', +) + (1 − 1().& ∗ ,)

Maximize number
of partitions

Maximize the difference
between the partitions

How to identify
such inputs?

1

Fuzzing Partioning
Algorithm

c(s1, y)
c(s2, y)
c(s3, y)
c(s4, y)

p2

p1

KDynamic &
Greedy

How to characterize
observation classes?

2

im Menü über:
Start > Absatz >

Listenebene

QFuzz: Workflow

Testing and Repair – The path to pro-active software resilience29

initial seed files

1
queue

2
trim input

3

mutate
repeatedly

4

mutated files that showed
(new) interesting behavior6

parse
input

5 mutant selection by input evaluation for
the instrumented program P

P[s1, y]
check for
improved
partitioning
or coverage

compute
partitions

P[s2, y]

P[sK, y]

a) #partitions k
b) minimum

distance !

c) program
 coverage…

c(s1, y),
cov1

c(s2, y),
cov2

c(s3, y),
covk

fuzzing driver

#$%"!,…,"",% &$'(&(* +', - , … , * +(, -) + (1	 −	4)*.'	∗	.)

Maximize number
of partitions

Maximize the difference
between the partitions

im Menü über:
Start > Absatz >

Listenebene

Example (K=100, ε=1, length=16, count=bytecode-instruction)

Testing and Repair – The path to pro-active software resilience30

QFuzz: �antitative Fuzzing for Side Channels ISSTA ’21, July 11–17, 2021, Virtual, Denmark

stringEquals (Original Jetty, v1)

boolean stringEquals(String s1, String s2) { .
if (s1 == s2)
return true;

if (s1 == null || s2 == null ||
s1.length () != s2.length ())

return false;
for (int i = 0; i < s1.length (); ++i)
if (s1.charAt(i) != s2.charAt(i))
return false;

return true;
}

stringEquals (Current Jetty, v4)

boolean stringEquals(String s1, String s2) {
if (s1 == s2) return true;
if (s1 == null || s2 == null)
return false;

boolean result = true;
int l1 = s1.length ();
int l2 = s2.length ();
for (int i = 0; i < l2; ++i)
result &= s1.charAt(i%l1) == s2.charAt(i));

return result && l1 == l2;
}

stringEquals (Safe Jetty, v5)

boolean stringEquals(String s1, String s2) { .
if (s1 == s2) return true;
if (s1 == null || s2 == null)
return false;

int l1 = s1.length ();
int l2 = s2.length ();
if(l2 == 0){ return l1 == 0}
int result |= l1 - l2;
for (int i = 0; i < l2; ++i){
int r = ((i - l1) >>> 31) * i;
result |= s1.charAt(r) ^ s2.charAt(i);

}
return result == 0;

}

Equals (Unsafe Spring-Security)

boolean Equals(String s1, String s2) { .
if (s1 == null || s2 == null)
return false;

byte[] s1B = s1.getBytes(�UTF -8�);
byte[] s2B = s2.getBytes(�UTF -8�);
int len1 = s1B.length;
int len2 = s2B.length;
if (len1 != len2)
return false;

int result = 0;
for (int i = 0; i < len2; i++)
result |= s1B[i] ^ s2B[i];

return result == 0;
}

Figure 2: String equality in Eclipse Jetty (s1 secret, s2 public). Top-Left: The code snippet is the original implementation for
the secret comparison that contains a strong side channel. Top-Right: The code is the current version that has been developed
to �x the side channel, but still leaks some information. Bottom-Left: The code snippet is a proposed safe implementation.
Bottom-Right: String equality in Spring-Security that leak whether the length of strings is matching.

Finally, we consider an unsafe variant of password matching from
Spring-Security as shown in Figure 2 (bottom-right). We study
the feasibility of side channels in these four implementations and
apply QF��� to estimate the amount of information leaks using the
number of partitions.

Example Parameters. We consider = 100 and n = 1 as default
con�guration parameters. We set the length of the secret and the
public guess to be the same and �xed to 16 characters. We run
QF��� 30 times on each variant, where each run is for 30 minutes.
We report the maximum number of partitions (:) and the cost
di�erences in bytecode between two closest partitions (X). The
detailed results for can be found in Table 1 and Table 3.

First Variant of Je�y. Figure 2 (top-left) shows the �rst variant,
for which QF��� discovers 17 classes of observations (: = 17).
Each partition is at least 3 bytecodes far from any other partition
(X = 3). Since we �x the length, the number of partitions re�ect
side-channel observations related to the content of secret inputs.
We �nd that each partition shows the number of characters in
the pre�x of secrets that match with the guess. Since there are 16
characters, there can be 17 partitions ranging from no pre�x match
to all 16 characters match. This implementation is known to be
vulnerable to adaptive side channels where an attacker can use the

cost observations to compromise a pre�x of a secret password in
each step of the attack. The outcome of QF��� indirecly indicates
the feasibility of adaptive attacks, while they are not the main focus.

Second Variant of Je�y (current implementation). We consider the
current implementation in Jetty as shown in Figure 2 (top-right).
In this case, QF��� detects 9 partitions where each partition is
at least 1 bytecode far from any others. This analysis shows that
the �x improved the security and reduced the strength of leaks as
compared to the �rst variant. SinceQF��� foundmultiple partitions,
however, we conclude that this variant is not completely safe. To
understand the issue, we analyze the corresponding instructions
generated by J��� Virtual Machine (JVM). The analysis shows
the equal operator (“==”) in the loop body is optimized by JVM
and translated to a conditional jump instruction (if_icmpne) if the
comparison is not successful and an unconditional jump instruction
otherwise. This translation introduces an imbalance comparison
where the unconditional jump includes a single extra bytecode
instruction as compared to the conditional jump.With 16 characters,
the bytecode di�erences, range from 0 to 16, are partitioned into 9
classes with n = 1.

Third Variant of Je�y (OpenJDK [28]). We take a password matching
algorithm from OpenJDK [28] that explicitly uses “xor” operation

K=17
5=3

K=9
5 =1

K=1 K=2
5 =149

only leaks
existence of

special character
⚠

DifFuzz

im Menü über:
Start > Absatz >

Listenebene
How much information can be leaked?

⇔
How can we fix the issue?

Testing and Repair – The path to pro-active software resilience31

im Menü über:
Start > Absatz >

Listenebene

Path to Side-Channel Repair

Testing and Repair – The path to pro-active software resilience32

Detection of
side-channel
vulnerabilities

Quantification
of side-channel
vulnerabilities

Repair of side-
channel

vulnerabilities

Developing
secure
software

Decision making in
(Secure) Software

Engineering

requires drives

enables

supports

Reduce vulnerability and
support developer

DifFuzz
(ICSE’19)

QFuzz
(ISSTA’21)

Pendulum
(TOSEM’24)

im Menü über:
Start > Absatz >

Listenebene

§ uses collected observations
from QFuzz to localize the
vulnerability

§ applies (safe) operators to
transform the source code

§ can introduce side-effects

§ published in TOSEM 2024

Testing and Repair – The path to pro-active software resilience33

Haifeng Ruan, Yannic Noller, Saeid Tizpaz-Niari, Sudipta Chattopadhyay, and Abhik Roychoudhury. “Timing Side-
Channel Mitigation via Automated Program Repair”, TOSEM 2024. https://doi.org/10.1145/3678169

https://doi.org/10.1145/3678169

im Menü über:
Start > Absatz >

Listenebene

Testing and Repair – The path to pro-active software resilience34

SC Repair Workflow (Pendulum, TOSEM‘24)

im Menü über:
Start > Absatz >

Listenebene

Testing and Repair – The path to pro-active software resilience35

Fix Localization (Basic Block)
Compare traces to find where they diverge

a

e

b

c

d

f

EXIT

g

h

diverge at a

converge at f (post-dominator of a)

P(y,s1): a b c b c d f g EXIT
P(y,s2):a e f g EXIT

im Menü über:
Start > Absatz >

Listenebene

Testing and Repair – The path to pro-active software resilience36

Fix Localization (Basic Block)
Compare traces to find where they diverge

a

e

b

c

d

f

EXIT

g

h

P(y,s1): a b c b c d f g EXIT
P(y,s3): a b c d f h EXIT

diverge at c

converge at d
(post-dominator of c)

diverge at f

converge at EXIT
(post-dominator of f)

im Menü über:
Start > Absatz >

Listenebene

Testing and Repair – The path to pro-active software resilience37

Fix Localization (Source Code)
Map conditional branches to source code

Source Code
1. If Statement
2. Loop Statements

for, while, do...while
3. Unsafe Operators

!, >, <, >=, <=, ==, !=, &&, ||, ?:

a

e

b

c

d

f

EXIT

g

h

Bytecode
Branches

Map

Debug Info

im Menü über:
Start > Absatz >

Listenebene

Testing and Repair – The path to pro-active software resilience38

Automated Program Repair

https://nus-apr.github.io/

State-of-the-art in Program Repair: Pictorial view derived from Communications of the ACM article 2019.

im Menü über:
Start > Absatz >

Listenebene

Path to Side-Channel Repair

Testing and Repair – The path to pro-active software resilience39

Detection of
side-channel
vulnerabilities

Quantification
of side-channel
vulnerabilities

Repair of side-
channel

vulnerabilities

Developing
secure
software

Decision making in
(Secure) Software

Engineering

requires drives

enables

supports

Reduce vulnerability and
support developer

DifFuzz
(ICSE’19)

QFuzz
(ISSTA’21)

Pendulum
(TOSEM’24)

im Menü über:
Start > Absatz >

Listenebene

Other things we work on

Testing and Repair – The path to pro-active software resilience40

§ Trusted Automatic Programming
§ APR in the era of Large Language Models (LLM)
§ Agentic Workflows for APR
§ Repair of Machine Learning models

§ Human Studies in SE
§ Developer surveys: Fuzzing + APR

§ Intelligent Tutoring Systems
§ Simulated Interactive Debugging

Automated
Program Repair

Machine Learning
Analysis

Software Testing

Human Factors
in SE

Intelligent Tutoring
Systems

Side-Channel Analysis (continued)

§ secure if the secret data can not be inferred by an attacker through their observations of
the system (aka non-interference)

§ can be solved by self-composition [Barthe2004]

! " #$%, '(!! = !(" #$%, '(!")
∀	#$%, '(!!, '(!": 	! " #$%, '(!! = !(" #$%, '(!")

! " #$%, '(!! 						!(" #$%, '(!")
! " #$%, '(!!
" #$%, '(!!program execution

cost observation

two secret values

equivalence

QFuzz: Workflow
Research Problem State of the Art Our Solution Example Evaluation Summary

yannic.noller@acm.org
saeid@utep.edu 8QFuzz: Quantitative Fuzzing for Side Channels

initial seed files

1
queue

2
trim input

3

mutate
repeatedly

4

mutated files that showed
(new) interesting behavior6

parse
input

5 mutant selection by input evaluation for
the instrumented program P

P[s1, y]
check for
improved
partitioning
or coverage

compute
partitions

P[s2, y]

P[sk, y]

a) #partitions k
b) minimum

distance !

c) program
coverage

…

c(s1, y),
cov1

c(s2, y),
cov2

c(s3, y),
covk

fuzzing driver

!"#!!,…,!",$ $"%&%(()&, + , … , ()', +) + (1 − 1().& ∗ ,)

Maximize number
of partitions

Maximize the difference
between the partitions

Detection of
side-channel
vulnerabilities

Quantification
of side-channel
vulnerabilities

Repair of side-
channel

vulnerabilities

Developing
secure
software

Decision making in
(Secure) Software
Engineering

requires drives

enables

supports

DifFuzz
(ICSE’19)

QFuzz
(ISSTA’21)

Pendulum
(TOSEM’24)

The path to pro-active
software resilience

Prof. Dr. Yannic Noller
yannic.noller@rub.de
https://yannicnoller.github.io/

Automated
Program Repair

Machine Learning
Analysis

Software Testing

Human Factors
in SE

Intelligent Tutoring
Systems

§ Trusted Automatic Programming
§ Trusted Automated Software Engineering
§ Fuzzing Shifting Left

https://yannicnoller.github.io/

