
22/01/2025 – Shonan Meeting 217: Trusted Automatic Programming
Simulated Interactive Debugging Yannic Noller

yannic.noller@rub.de

im Menü über:
Start > Absatz >

Listenebene

Disclaimer
§ this is work in progress, feedback appreciated!
§ short paper is available on arXiv

§ joint work with:
§ Erick Chandra (SUTD)
§ Srinidhi HC (SUTD)
§ Kenny Choo (SUTD)
§ Cyrille Jegourel (SUTD)
§ Oka Kurniawan (SUTD)
§ Christopher M. Poskitt (SMU)

Simulated Interactive Debugging2

Simulated Interactive Debugging
Yannic Noller∗

yannic.noller@acm.org
Ruhr University Bochum

Germany

Erick Chandra
erick_chandra@sutd.edu.sg
Singapore University of
Technology and Design

Singapore

Srinidhi HC
srinidhi.hc@gmail.com
Singapore University of
Technology and Design

Singapore

Kenny Choo
kenny_choo@sutd.edu.sg
Singapore University of
Technology and Design

Singapore

Cyrille Jegourel
cyrille_jegourel@sutd.edu.sg
Singapore University of
Technology and Design

Singapore

Oka Kurniawan
oka_kurniawan@sutd.edu.sg
Singapore University of
Technology and Design

Singapore

Christopher M. Poskitt
cposkitt@smu.edu.sg
Singapore Management

University
Singapore

Abstract
Debugging software, i.e., the localization of faults and their repair,
is a main activity in software engineering. Therefore, e!ective and
e"cient debugging is one of the core skills a software engineer must
develop. However, the teaching of debugging techniques is usually
very limited or only taught in indirect ways, e.g., during software
projects. As a result, most Computer Science (CS) students learn
debugging only in an ad-hoc and unstructured way. In this work,
we present our approach called Simulated Interactive Debugging
that interactively guides students along the debugging process. The
guidance aims to empower the students to repair their solutions
and have a proper "learning" experience. We envision that such
guided debugging techniques can be integrated into programming
courses early in the CS education curriculum. To perform an ini-
tial evaluation, we developed a prototypical implementation using
traditional fault localization techniques and large language models.
Students can use features like the automated setting of breakpoints
or an interactive chatbot. We designed and executed a controlled
experiment that included this IDE-integrated tooling with eight
undergraduate CS students. Based on the responses, we conclude
that the participants liked the systematic guidance by the assisted
debugger. In particular, they rated the automated setting of break-
points as the most e!ective, followed by the interactive debugging
and chatting, and the explanations for how breakpoints were set. In
our future work, we will improve our concept and implementation,
add new features, and perform more intensive user studies.

Keywords
Intelligent Tutoring, Debugging, Software Engineering, Education

1 Introduction
Despite the paradigm shift towards Arti#cial Intelligence (AI)-
assisted software development, particularly with the emergence of
Large Language Models (LLMs), there remains a high demand for
quali#ed software engineers capable of developing reliable, high-
quality software. With more auto-generated code, it will become
even more critical that junior software developers can e!ectively
debug software and solve bugs, even in code they have not written
themselves. Radermacher et al. [28] explored knowledge de#cien-
cies of graduate students from an industry perspective. One of the
∗Corresponding Author.

most frequently mentioned issues with software tools has been
version control systems and debuggers. While we have seen the
integration of version control systems like Git in the Computer
Science (CS) and Software Engineering (SE) curriculum, e.g., with
the usage of GitHub Classroom, we have not seen much innovation
regarding debugging education. Michaeli and Romeike [25] noted
that there are only few studies investigating the "explicit teaching
of debugging" and students are often left alone to learn debugging
"the hard way". Our experience con#rms this observation: most
students still learn (interactive) debugging of code in an ad-hoc and
unstructured way by trial and error. Using "print/log" statements is
often the only extent of students’ experience in debugging. They
do not receive proper guidance in e"cient program comprehension
and how to debug programs e!ectively. Current CS/SE research
e!orts focus on general programming education, which helps to
provide scalable alternatives to mentor and guide a rising number of
students. Automated Program Repair (APR) techniques [14, 17, 34]
can help to produce patches for incorrect submissions, which then
can be used as a basis for personalized feedback, or even automated
grading [12]. In fact, we already have seen the application of such
techniques in the CS/SE curriculum focusing on repairing students’
solutions and providing feedback [11, 19]. However, the existing
related work does not address actual debugging.

Our research objective is to understand students’ needs in learn-
ing to debug and provide automated means to guide them e!ec-
tively along the debugging process.

As part of this objective, we strive to seek answers to questions
like "How can we guide the debugging process using artifacts gener-
ated from APR/SE techniques?" and "How can LLMs be integrated
into the debugging process for the bene#t of the student?"

As a #rst step to achieve our research objective, we propose the
concept of Simulated Interactive Debugging. The essence of this
concept is to create a simulation of an interactive debugging expe-
rience; "simulated" because the solution is known in the education
context due to given reference implementations and artifacts like
fault locations and patches that can be auto-generated with SE and
APR techniques. Our goal is to provide a controlled but supportive
environment, in which the students debug the problem on their
own. Similar to a human tutor who would not directly reveal the
solution and instead help the student to understand and #x the

1

ar
X

iv
:2

50
1.

09
69

4v
1

 [c
s.S

E]
 1

6
Ja

n
20

25

https://arxiv.org/pdf/2501.09694

https://arxiv.org/pdf/2501.09694

im Menü über:
Start > Absatz >

Listenebene

Context: CS/SE Education
§ providing automated help to CS/SE students: Intelligent Tutoring Systems
§ debugging education ~ teaching interactive debugging
§ in our experience:

§ learning debugging mostly happens adhoc and in an unstructured way
§ students rely on print/log statements

Simulated Interactive Debugging3

im Menü über:
Start > Absatz >

Listenebene

Relevance for “Trusted Automatic Programming“
§ Trust in “using“ auto-generated code: being able to debug it?
§ Students should learn debugging of code effectively.
§ How to interact with AI as student? Trust the AI tutor?

Simulated Interactive Debugging4

im Menü über:
Start > Absatz >

Listenebene

Simulated Interactive Debugging5

Our research objective is to understand students’ needs
in learning to debug and provide automated means to

guide them effectively along the debugging process.

Also, teach the usage of AI-based tools like ChatGPT. By
constructing a chatbot that uses LLMs, we can control the

prompts and the contents of responses, and hence, still
foster a learning experience for the students, e.g., by

filtering direct solutions.

im Menü über:
Start > Absatz >

Listenebene

Related Work
§ Debugging education:

§ ‘‘debugging is a skill that does not immediately follow from the ability to write code.
Rather ... it must be taught’’ [1]

§ Automated generation of code debugging exercises [2]

§ Intelligent Tutoring Systems
§ repair, feedback, grading
§ also with LLMs

§ But overall no focus on (guided) interactive debugging

Simulated Interactive Debugging6

[1] Kessler, C.M. and Anderson, J.R., 1986, June. A model of novice debugging in LISP. In Papers presented at the first workshop on
empirical studies of programmers on Empirical studies of programmers (pp. 198-212).

[2] V.-A. Pădurean, P. Denny, and A. Singla. 2025. BugSpotter: Automated Generation of Code Debugging Exercises . In Proceedings of
the 56th ACM Technical Symposium on Computer Science Education V. 1 (SIGCSE TS 2025).

im Menü über:
Start > Absatz >

Listenebene

Concept: Simulated Interactive Debugging
§ create a simulation of an interactive debugging experience
§ "simulated" ~ the solution is known in the education context

§ reference implementations is given
§ artifacts like fault locations and patches can be auto-generated
§ provides controlled but supportive environment

§ requires integration into tools like Integrated Development Environments (IDEs)
§ to guide students actively during the debugging

§ inputs:
§ from lecturer: programming assignment, reference implementation, public + private

test cases
§ from student: (buggy) solution, (additional test case)

Simulated Interactive Debugging7

im Menü über:
Start > Absatz >

Listenebene

Simulated Interactive Debugging8

Student

Assistant

You just run your code for the factorial function and it
fails test case 2. Do you want me to explain the issue?

Yes!

For n=2, the loop will run only once because range(1,2)
generates only 1. What might be happening to the

calculation of the factorial in this case?

I don’t know... where is the error in my code?

Okay, no problem. Use the Set Breakpoints feature to
identify the relevant lines to identify the error. Click on

the lines for an explanation.

Envisioned Dialogue (1/2)

clarify/explain failing
test cases and the
observed failures

automatically set
breakpoints at

locations of interest

im Menü über:
Start > Absatz >

Listenebene

Simulated Interactive Debugging9

Envisioned Dialogue (2/2)

incremental guidance,
e.g., via progressive

hints

identify and highlight
interesting

program variables

I am still stuck. Can you give me a hint?

Absolutely! For the input n=2, the loop runs only once
because range (1,2) generates only 1. Think about

what the initial value of fact is and how it gets updated
in each iteration of the loop.

I see the issue now. Are there any variables I should
focus on?

Yes, focus on the variables fact and i within the loop.
Consider how fact is initialized and updated in each
iteration of the loop. Take a moment to review and
adjust how fact is being updated within the loop.

Student

Assistant

im Menü über:
Start > Absatz >

Listenebene

Features of Simulated Interactive Debugging

Simulated Interactive Debugging10

(1) clarify/explain failing test cases and the observed failures
(2) automatically set breakpoints at locations of interest
(3) generate hints in natural language explaining why these breakpoints

are of interest
(4) deliver incremental guidance, e.g., via progressive hints, or partially

reveal why a certain test case execution fails
(5) help the student in the interactive debugging by identifying and

highlighting interesting program variables

(6) test assessment for
§ lecturers: Is the test suite strong enough for automated debugging?
§ students: Is the test case correct? Are all relevant parts covered?

LLMs
SBFL, APR
LLMs

LLMs, APR

APR, LLMs,
static analysis

mutation testing
execution, coverage

im Menü über:
Start > Absatz >

Listenebene

Prototype Implementation

Simulated Interactive Debugging11

§ Visual Studio Code IDE extension
§ first focus on supporting Python
§ two core features for the assisted debugger:

§ the automatic setting of breakpoints (based on SBFL with FauxPy)
§ and a chat interface providing tailored debugging hints using OpenAI gpt-3.5-turbo

§ we omitted the support for the lecturer’s and the student’s test assessment

im Menü über:
Start > Absatz >

Listenebene

im Menü über:
Start > Absatz >

Listenebene

Two modes: The “Generate
Hints” and “Interactive
Debugging Guidance”.

im Menü über:
Start > Absatz >

Listenebene

im Menü über:
Start > Absatz >

Listenebene

Selecting the "Interactive
Debugging Guidance”

will provide an initial set
of instructions to debug

the code.

im Menü über:
Start > Absatz >

Listenebene

Breakpoints and their
explanations

im Menü über:
Start > Absatz >

Listenebene

Prompting

Simulated Interactive Debugging17

§ Prompting has been used for breakpoint explanations, failure test explanations, and
interactive guidance.

§ Guardrails have been incorporated as keywords to ensure the fairness of the system
and prevent misuse; e.g., we filter out code snippets.

§ For interactive debugging guidance, the prompt also considers additional context
involving problem description, line of code where the bug might be, and test cases.

Breakpoint explanation:

Explain the following lines of code where
breakpoints are set. Provide a specific,
concise explanation for each line:

${code}

Tests explanation:

As a software engineer, I need you to describe the
failure observation while explaining the failure, also by
showing the failures. Do not provide the root cause of
the failure.

${test-output}

im Menü über:
Start > Absatz >

Listenebene

Prompt for Interactive Guidance

Simulated Interactive Debugging18

You are an AI tutor specializing in programming and computer science. Your role is to
assist students in debugging their code by guiding them through questions and hints
only based on the code provided.

Guidelines:
1. Maintain a supportive and encouraging tone.
2. Never provide complete code solutions or direct answers.
3. Guide the student towards understanding concepts and problem-solving

strategies.
4. Use the Socratic method by asking probing questions.
5. Provide hints and explanations of relevant concepts.
6. Encourage good coding practices.
7. Use markdown formatting, including for inline code.
8. Always focus on helping the student think critically and arrive at the solution on

their own. Part 1/3

im Menü über:
Start > Absatz >

Listenebene

Simulated Interactive Debugging19

Topic of this chat: ${problemDescription || 'Not
specified by student.'}

Additional context:

Student's Code:
```
${codeText}
```

Bug Description:
${bugDescription}

Relevant Test Cases:
${testCases}

Debugger Variable Values:
${variableValues}

Important: Only provide assistance related to
the code above. Do not engage in topics or
assignments not directly related to this code.

Begin the conversation by engaging the student
to help them identify and resolve issues in their
code. Remember to encourage critical thinking
and self-discovery.

Part 2/3

Part 3/3

im Menü über:
Start > Absatz >

Listenebene

Pilot User Study

Simulated Interactive Debugging20

§ Design Science methodology [1,2]

§ Goal:
§ investigate the practicality of concept, and
§ receive first insights on the usability of our implementation

§ We informed participants that the chatbot’s hints might not be entirely accurate

[1] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. 2004. Design Science in Information Systems Research. MIS
Quarterly 28, 1 (2004), 75–105. http://www.jstor.org/stable/25148625

[2] Roel J. Wieringa. 2014. Design Science Methodology for Information Systems and Software Engineering. Springer Berlin
Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43839-8_1

http://www.jstor.org/stable/25148625
https://doi.org/10.1007/978-3-662-43839-8_1

im Menü über:
Start > Absatz >

Listenebene

Participants

Simulated Interactive Debugging21

§ eight first-year undergraduate CS students

1
1

6

0 1 2 3 4 5 6 7

No experience.
Issues with root cause analysis.

Able to debug simple errors only.

Debugging Experience

5
1

2

0 1 2 3 4 5 6

No experience.
Heard of it, but did not use it.

Only l imited experience.

Experience with the Interactive Debugger

1
4

3

0 1 2 3 4 5

3-4
1-2
<1

Programming Experience (in years)

1

4

3

Programming Experience

I’m just starting to learn
programming

I have some experience
and can write basic
programs (Intermediate)

I can write and debug
intermediate-level
programs with some
guidance

im Menü über:
Start > Absatz >

Listenebene

Experiment Setup

Simulated Interactive Debugging22

1. Briefing, IRB, and profiling survey
2. Introduction into debugging and tool demonstration
3. Task solving (~40min): two medium coding tasks with given buggy code
4. Usability and post-task survey

im Menü über:
Start > Absatz >

Listenebene

Results: Existing Features

Simulated Interactive Debugging23

1

1

2

3

1

1

4

2

2

3

5

4

3

3

3

1

1

0 1 2 3 4 5 6 7 8

Progressive Hints
Test Error Explanation

Explanation of Automatic Breakpoint Setting
Interactive Debugging and Chatting Features

Automatic Breakpoint Setting

Are the provided features effective?

Strongly Agree Agree Neutral Disagree Strongly Disagree

"It did get the breakpoint in the right place,
which was a good start in debugging.“

"It helped me brainstorm while guiding
me and not letting me fully rely on AI."

im Menü über:
Start > Absatz >

Listenebene

Results: Usability

Simulated Interactive Debugging24

§ based on standardized system usability survey [1]

§ average System Usability Scale (SUS) is ~65 (out of 100)
§ providing a good basis for our future work, but also shows improvement potential

[1] John Brooke. 1996. SUS: A quick and dirty usability scale. Usability Evaluation in Industry (1996).

im Menü über:
Start > Absatz >

Listenebene

Results: Debugging Process

Simulated Interactive Debugging25

1 2 2 3

0 1 2 3 4 5 6 7 8

Confidence

Confidence Break Point setting

Strongly Agree Agree Neutral Disagree Strongly Disagree

“Normally I would just trial and error until I got it
right, but this tool allowed me to systematically
identify the problems in the code step by step."

„This debugging process is
unfamiliar to me so it is quite hard.“

„More time consuming but
effective.“

"My usual debugging process
includes using print statements
and doing everything myself but

sometimes I just get tired and ask
ChatGPT. Simulated Interactive
Debugging helped me think while

guiding me through the right
process.“

im Menü über:
Start > Absatz >

Listenebene

Results: Additional Features

Simulated Interactive Debugging26

§ [6/8] further hints about what and how to change would be helpful
§ [1/8] user interface could be improved to enable easier switching between the

debugging information from the assisted debugger and the actual interactive debugging
tool in the IDE

§ [1/8] integrating some automated test case generation would be helpful

im Menü über:
Start > Absatz >

Listenebene

What did we learn?

Simulated Interactive Debugging27

+ confirmed hypothesis: most students do not use interactive debugging
+ concept of Simulated Interactive Debugging seems to be useful for students
+ students liked the interaction with the chatbot
+ students enjoyed the exposure to AI-based tooling in a controlled environment

– more improvements regarding implementation/UI needed (~ usability)
– the features „test error explanation“ and „progressive hints“ need to be implemented
 more robust

im Menü über:
Start > Absatz >

Listenebene

What‘s next?

Simulated Interactive Debugging28

§ this work is part of a larger research project to build an AI assistant for CS students
integrated in the IDE

§ full implementation of the concept, also the test assessment
§ more intensive user evaluation
§ improve our interactive chatbot with more guidance, e.g., by using a state machine-

driven approach [1]

§ support for other aspects
§ programming, debugging, test case generation, design, soft qualities: readability, etc.

[1] Islem Bouzenia, Premkumar Devanbu, and Michael Pradel. 2024. RepairAgent: An autonomous, llm-based agent for program repair.
arXiv preprint arXiv:2403.17134 (2024).

im Menü über:
Start > Absatz >

Listenebene

Summary

Simulated Interactive Debugging29

§ Context: CS/SE education
~ teaching interactive debugging

§ Concept: Create a simulation of
an interactive debugging.
§ guide students actively during the

debugging process
§ set breakpoints automatically
§ incremental guidance via

LLM-powered chatbot
§ Pilot Study: with eight undergraduate

students

Simulated Interactive Debugging
Yannic Noller∗

yannic.noller@acm.org
Ruhr University Bochum

Germany

Erick Chandra
erick_chandra@sutd.edu.sg
Singapore University of
Technology and Design

Singapore

Srinidhi HC
srinidhi.hc@gmail.com
Singapore University of
Technology and Design

Singapore

Kenny Choo
kenny_choo@sutd.edu.sg
Singapore University of
Technology and Design

Singapore

Cyrille Jegourel
cyrille_jegourel@sutd.edu.sg
Singapore University of
Technology and Design

Singapore

Oka Kurniawan
oka_kurniawan@sutd.edu.sg
Singapore University of
Technology and Design

Singapore

Christopher M. Poskitt
cposkitt@smu.edu.sg
Singapore Management

University
Singapore

Abstract
Debugging software, i.e., the localization of faults and their repair,
is a main activity in software engineering. Therefore, e!ective and
e"cient debugging is one of the core skills a software engineer must
develop. However, the teaching of debugging techniques is usually
very limited or only taught in indirect ways, e.g., during software
projects. As a result, most Computer Science (CS) students learn
debugging only in an ad-hoc and unstructured way. In this work,
we present our approach called Simulated Interactive Debugging
that interactively guides students along the debugging process. The
guidance aims to empower the students to repair their solutions
and have a proper "learning" experience. We envision that such
guided debugging techniques can be integrated into programming
courses early in the CS education curriculum. To perform an ini-
tial evaluation, we developed a prototypical implementation using
traditional fault localization techniques and large language models.
Students can use features like the automated setting of breakpoints
or an interactive chatbot. We designed and executed a controlled
experiment that included this IDE-integrated tooling with eight
undergraduate CS students. Based on the responses, we conclude
that the participants liked the systematic guidance by the assisted
debugger. In particular, they rated the automated setting of break-
points as the most e!ective, followed by the interactive debugging
and chatting, and the explanations for how breakpoints were set. In
our future work, we will improve our concept and implementation,
add new features, and perform more intensive user studies.

Keywords
Intelligent Tutoring, Debugging, Software Engineering, Education

1 Introduction
Despite the paradigm shift towards Arti#cial Intelligence (AI)-
assisted software development, particularly with the emergence of
Large Language Models (LLMs), there remains a high demand for
quali#ed software engineers capable of developing reliable, high-
quality software. With more auto-generated code, it will become
even more critical that junior software developers can e!ectively
debug software and solve bugs, even in code they have not written
themselves. Radermacher et al. [28] explored knowledge de#cien-
cies of graduate students from an industry perspective. One of the
∗Corresponding Author.

most frequently mentioned issues with software tools has been
version control systems and debuggers. While we have seen the
integration of version control systems like Git in the Computer
Science (CS) and Software Engineering (SE) curriculum, e.g., with
the usage of GitHub Classroom, we have not seen much innovation
regarding debugging education. Michaeli and Romeike [25] noted
that there are only few studies investigating the "explicit teaching
of debugging" and students are often left alone to learn debugging
"the hard way". Our experience con#rms this observation: most
students still learn (interactive) debugging of code in an ad-hoc and
unstructured way by trial and error. Using "print/log" statements is
often the only extent of students’ experience in debugging. They
do not receive proper guidance in e"cient program comprehension
and how to debug programs e!ectively. Current CS/SE research
e!orts focus on general programming education, which helps to
provide scalable alternatives to mentor and guide a rising number of
students. Automated Program Repair (APR) techniques [14, 17, 34]
can help to produce patches for incorrect submissions, which then
can be used as a basis for personalized feedback, or even automated
grading [12]. In fact, we already have seen the application of such
techniques in the CS/SE curriculum focusing on repairing students’
solutions and providing feedback [11, 19]. However, the existing
related work does not address actual debugging.

Our research objective is to understand students’ needs in learn-
ing to debug and provide automated means to guide them e!ec-
tively along the debugging process.

As part of this objective, we strive to seek answers to questions
like "How can we guide the debugging process using artifacts gener-
ated from APR/SE techniques?" and "How can LLMs be integrated
into the debugging process for the bene#t of the student?"

As a #rst step to achieve our research objective, we propose the
concept of Simulated Interactive Debugging. The essence of this
concept is to create a simulation of an interactive debugging expe-
rience; "simulated" because the solution is known in the education
context due to given reference implementations and artifacts like
fault locations and patches that can be auto-generated with SE and
APR techniques. Our goal is to provide a controlled but supportive
environment, in which the students debug the problem on their
own. Similar to a human tutor who would not directly reveal the
solution and instead help the student to understand and #x the

1

ar
X

iv
:2

50
1.

09
69

4v
1

 [c
s.S

E]
 1

6
Ja

n
20

25
1

1

2

3

1

1

4

2

2

3

5

4

3

3

3

1

1

0 1 2 3 4 5 6 7 8

Progressive Hints
Test Error Explanation

Explanation of Automatic Breakpoint Setting
Interactive Debugging and Chatting Features

Automatic Breakpoint Setting

Are the provided features effective?

Strongly Agree Agree Neutral Disagree Strongly Disagree

