RUHR-UNIVERSITAT BOCHUM

Introduction into Automated Program Repair

12.12.2024 — Ringvorlesung — Uni Ulm

Prof. Dr. Yannic Noller
Software Quality group

Software Quality
research group at RUB

About Me

= since July 2024: Professor for Computer Science, Ruhr University Bochum
= Before:
= 2023 — 2024 Singapore University of Technology and Design (Assistant Professor)
= 2020 — 2023: National University of Singapore (PostDoc, Research Assist. Prof.)
= 2016 — 2020: PhD student at HU Berlin
= 2010 — 2016: Bachelor and Master in Software Engineering at University of Stuttgart
= Research Interests:
= automated software engineering
= software testing & verification (e.g., symbolic execution and fuzzing)
= software repair (e.g., semantic-based)

RUHR
Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Software Quality Research @ RUB

developing new repair exploring and designing
techniques to aid developers (hybrid) testing techniques
in fixing program bugs /\ to systematically generate
Automated test inputs that expose

Program Repair Software Testing

/ how to help CS students \ / \
learn programming by
applying concepts from
automated testing and Intelligent Tutoring Machine Learning
repair to guide the students Systems Analysis

_ toward the right solution) automated analysis, testing,
\ / and repairing of machine
learning models

studying developer needs and H Fact
requirements for successful deployment uman Factors

of testing and repair techniques in in SE | |
development practice https://informatik.rub.de/en/sq/

incorrect program behavior

RUHR
4 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

https://informatik.rub.de/en/sq/

Bugs are Rising

4000 A % EZ=] Unfixed, flaky
fooo] [e=d Unfixed, non-flaky
3500 1 , [Fixed, flaky
= A study of over 5000 bugs found by [Fixed, non-flaky
OSS-Fuzz in the last 5 years 3000 Py
= More than 50% of the bugs are 2200
. N | 2112
security bugs, e.g., overflows 5 2000 ,MEMO -
. . . g ool 1?23 1590 004
= Median time to fix non-flaky bugs: Z 15001 O30 [ot ST
approx. 5 days 1000 -
= Some remain unfixed for long 500 1 T
time L | | |
.\“&?96 o\\‘:\y\\ o «° o @c ‘(\E\«\‘\a\ 9\“\6?, 6\“\ o“\; o“ee &€
o d£;§° v{ipv

Z.Y.Ding and C. Le Goues, "An Empirical Study of OSS-Fuzz Bugs," MSR 2021, https://doi.org/10.1109/MSR52588.2021.00026

RUHR
5 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

https://doi.org/10.1109/MSR52588.2021.00026

Repairs — (often) Simple but not Straightforward

Faulty Commit #7040497fa
Apache Tomcat auty

public synchronized void run() {

@Override
public void run() { Commit message:
if (getError() == null) {
try { Add sync when processing asynchronous operation in NIO. The NIO
if (read) { poller seems to create some unwanted concurrency, causing rare Cl
nBytes = getSocket().read(buffers, offset, length); test failures......It doesn't seem right to me that there is concurrency
updateLastRead(); here, “but it's not hard to add a Sync.”
}else{
nBytes = getSocket().write(buffers, offset, length);
updateLastWrite();
}
[/

Correct Commit #29f060adb

@Override
public void run() {
if (getError() == null) {

try {
if (read) {
nBytes = getSocket().read(buffers, offset, length);
updatelLastRead();
}else {
nBytes = getSocket().write(buffers, offset, length);
updatelLastWrite();

/e

RUHR
Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Repairs — (often) Simple but not Straightforward

How do we
fix this?

Buggy Program

int length, index = 0; Potential Repairs

int height[10], breadth[8];
input(length); length = 11 / \
Buffer while (index < length) { 1. while (index < length &
% height[index] = index + 1; length < sizeof(height)) {
Overflow ++index;
¥ 2. while (index < length &
index < sizeof(height)) {
while (index >= 0) { 3.int height[20],..
breadth[index] = index + 1;
index—; 4.if (length >
} sizeof(height)) {
abort();}

- J

RUHR
7 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

RUHR
8 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Cost of Repairs

Requirement
Designing

= Maintenance constitutes the major
cost of software development

= |t costs = $312 billion per year

Implementation

Testing

Maintenance

http://www.prweb.com/releases/2013/1/prweb10298185.htm
https://sceweb.sce.uhcl.edu/helm/WEBPAGES-SoftwareEngineering/myfiles/TableContents/Module-13/software_maintenance_overview.html

RUHR
9 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Software Development Life-Cycle

{—\ r\

s

X B
Measure

Run tests

Fix issues Debug performance
. » N /
g=l

Send for

integration

testing —_— \\W,,
Write new code Ship to

production

Xiang Gao, Yannic Noller, and Abhik Roychoudhury. "Program repair., 2022, https://arxiv.org/abs/2211.12787

RUHR
10 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Automated Program Repair (APR)

==

Buggy Program

Locate Bug

.

Find a fix

o @Q@W\

Validate

the fix /

—

Repaired Program

1"

Introduction into Automated Program Repair

RUHR
UNIVERSITAT
BOCHUM

RUB

RUHR
12 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Roadmap

= Brief Introduction
= Fault localization
= Types of Automated Program Repair (APR)

= Search-based (Generate and Validate)

= Semantic-based

» |[earning-based

= APRin the era of Large Language Models (LLM)

= (Repair of Security Vulnerabilities)
= Challenges in Program Repair: Overfitting and Ranking
= Real World applicability of APR tools — Solution and challenges

13

Introduction into Automated Program Repair

RUHR
UNIVERSITAT
BOCHUM

RUB

Main Components

==>

Buggy Program

Step 1
Fault
Localization

Spectrum emantic
Based Based

-

Locate Bug Find a fix

=>Qa>v -

Validate

> |=

| the fix Qd Program

Step 2

Step 3

Patch
Generation

Patch
Validation

Test Verification
Based Based

14

Introduction into Automated Program Repair

RUHR
UNIVERSITAT
BOCHUM

RUB

Types of APR

Search-based
Repair

Generate patch
candidates

i

Validate patch
candidates

Buggy program

!

Fault localization

Code corpus

Learning-based
Repair

= | earning/Interference

|

Model of patches

i Semantic
I Repair
Passing & Extract
failing tests ™ constraints
1
¥ ¥
Code Synthesise code via

transformations

constraint solving

l

Patch

|

Predict patch

State-of-the-art in Program Repair: Pictorial view derived from Communications of the ACM article 2019.

https://nus-apr.github.io/

15 Introduction into Automated Program Repair

RUHR
UNIVERSITAT
BOCHUM

Automated
Fault Localization

Fault Localization

= Metric-based

= Program dependence-based
= Atrtificial Intelligence-based
= Statistics-based

= Mutation-based

RUHR
17 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Metric Based Fault Localization

= For each program element, outputs a suspiciousness score
= |ntuition: Program elements executed in failing test cases are likely to be faulty

= passed(s) : number of passing test cases executed the statement s
= tfotalpassed: total number of passed test cases

= failed(s): number of failing test cases executed the statement s

= fotalfailed: total number of failing test cases

RUHR
Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

(1/4) Run test cases

3,3,5 (4,56 (4,44

def mid(x, y, z):

m= 2z
if (y < z):
if (x < y):
m=y
elif (x < z):
m=y
else:
if (x > y):
m=y
elif (x > z):
m= X
return m
19 Introduction into Automated Program Repair

6,34 (2,1,3) (54,9

mid(3,3,5) == 3

mid(4,5,6) ==

mid(4,4,4) ==

mid(5,3,4) ==

mid(2,1,3) ==

mid(5,4,9) ==

X X X X

RUHR
UNIVERSITAT
BOCHUM

RUB

def mid(x, y, z):

m=z
iy = zZ):
IR ORI
m=y
elifin T <Nz):
m=y
else:
if (x > y):
m=y
elif (x > z):
m= X
return m
mid(3,3,5) =3

(2/4) Statement Coverage

def mid(x, y, z):
m=z
LRy <7
if (= v):
m=y

elif (x < z):

m=y
else:
if (x > y):

m=y

elif (x > z):

m= X
return m

mid(5,3,4) = 4

def mid(x, y, z):
m=z
if (y < z):
if (x < y):
m=y
el =z
m=y
else:
if (x > y):
m=y
elif (x > z):
m= X
return m

mid(2,1,3) = 1

Introduction into Automated Program Repair

RUHR
UNIVERSITAT
BOCHUM

(2/4) Compute Statement Coverage

e PASS PASS PASS PASS FAIL FALL

RUHR
21 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

(3/4) Compute Suspiciousness score

= Different metrics to compute suspiciousness score
» Tarantula
= Occhia
= Op2
= Barinel
= Star

22

RUHR
Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

(3/4) Tarantula S(s) =

failed(s)/totalfailed

= First proposed technique for the fault localization

Line Statement (3,35 (4,56 (444)
[] [
[] []
[J
[J
[J
[]
[]
[] [] []
| PASS PASS PAsS

0.50
[] [] [] :
° ° ° 0.50
° Y Y 0.57
0.00
° 0.67
0.80
0.00
0.00
° ° ° 0.50
PASS FAIL FAIL

failed(s)/totalfailed+passed(s)/totalpassed

23 Introduction into Automated Program Repair

RUHR
UNIVERSITAT
BOCHUM

RUB

(4/4) Prioritising Statements

= A Program Repair technique requires def mid(x, y, z):
to know which statement it has to fix | 05 |
first | 05
= Solution: Prioritise by the suspicion
score m =Yy
elif (x < z):
m=y [os |
else:
if (x > vy):
m=y
elif (x > z):
m= X

RUHR
24 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

RUHR
25 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Patch Generation

= With a list of suspicious locations, the next step is to correct them!
= Multiple approaches exist:

Buggy program Code corpus
Fault localization Learning-based
Search-based == I Semantic Repair
Repair I Repair .
Learning/Interference
Generate patch Passing & Extract l
candidates failingtests ™~ constraints
Il L Model of patches
¥ A l
Validate patch Code Synthesise code via
candidates transformations constraint solving Predict patch

l

Patch

26 Introduction into Automated Program Repair

RUHR
UNIVERSITAT
BOCHUM

RUB

Search-based APR

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL 38, NO. 1, JANUARY/FEBRUARY 2012

GenProg: A Generic Method
for Automatic Software Repair

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, Senior Member, IEEE, and Westley Weimer

Abstract—This pay ribes GenProg, an autor

d method for repairing defects in off-th

elf, legacy programs without formal

speciicaons, progam anmotatons,or specil osing pracices. Genbroq uses an extondedform of ganetc ragramming f ovolo a

program variant that retains required function

ity but is not susceptible to a given defect, usi ing test suites to encode both th

defect and required hmrwvnahw Structural differencing algorithms and delta debugging reduce the difference between this variant and

the original program to a minimal repair. We
totaling 1.25 M lines of C code and 120K lines of module

descibe the algorithm and roport experimental rosults of s success on 16 pr
‘ode, spanning eight classes of

d ond
analyze the generated repairs qualitatively and quanitatively to demonstrate that the process eumemly pmduces evolved programs.
that repair the defect, are not fragile input memorizations, and do not lead to serious degradation in functionaliy.

Index Terms—Automatic programming, corrections, testing and debugging,

1 INTRODUCTION

SA FrwaRE quality is a pernicious problem. Mature soft-
vare projects are forced to ship with both known and

unknown bugs [1] because the number of outstanding

software defects typically exceeds the resources available to

address them [2]. Software maintenance, of which bug

], is time-consuming and

repair is a major component [3
expensive, accounting for as much as 90 percent of the cost

of a software project [5] at a total cost of up to $70 billion per
year in the US [6], [7]. Put simply: Bugs are ubiquitous, and
finding and repairing them are difficult, time-consun

and manual processes.

Techniques for automatically detecting software flaws
include intrusion detection [8], model checking and light-
weight static analyses [9], [10], and software diversity
methods [11], [12]. However, detecting a defect is only half
of the story: Once identified, a bug must stil be repaired. As
the scale of software deployments and the frequency of
defect reports increase [13], some portion of the repair
problem must be addressed automaticlly.

s paper describes and evaluates Genetic Program

0g”), a technique that uses existing test cases

to automatically g rld bugs in off-

e, legacy applications. We follow Rinard et al.[14] in

ing a repair as a patch consisting of one or more code
Junw that, when applied to a program, cause it to pas:

set of test cases (typically including both tests of required

behavior as well as a test ca oding the bug). The test

nerate repairs for real-wi

Computer Scien
ity of New Mex
uyen, forrest

ised 6 Oct. 2010; ace
and P. Inverardi
s of s arie, pl
$ Log Nnier T5E

+

cases may be human written, taken from a regression te:
suite, steps to reproduce an error, or generated automati-
cally. We use the terms “repair” and “patch” interchange-
ably. GenProg_does not require formal_specifications,
program annotations, or special coding practices. GenProg’s
approach is generic, and the paper reports results demon-
strating that GenProg can successfully repair several types
of defects. This contrasts with related appros
repair only a specific type of defect (such as buffer overruns
[15], [16)).
nProgtakes as input a program with a defect and asetof

testca nProg may be applied either to the full program
source or to individual modules. It uses genetic programming
(GP) to search for a program variant that retains required
functionality but is not vulnerable to the defect in question.
GP s a stochastic search method inspired by biological
evolution that discovers computer programs tailored to a
particular task [17, [18]. GP uses computational analogs of
biological mutation and crossover to generate new program
variations, which we call variants. A user-defined fifness
function evaluates each variant; GenProg uses the input tes
cases toevaluate the fitness, and individuals with high fitne:
are selected for continued evolution. This GP process is
successful when it produces a variant that passes all tests
encoding the required behavior and does not fail those
encoding the bug. Although GP has solved an impressive
range of problems (e.g., [19)),it has not previously been used

ther to evolve off-the-shelf legacy software or to patch real-
world vulnerabilities, despite various proposals directed at
automated error repair, e.g., [20].

A significant impediment for GP efforts to date has been
the potentially infinite space that must be searched to find a
correct program. We introduce three key innovations to
address this longstanding problem [21]. First, GenProg
operates at the stafement level of a program’s abstract syntax
tree (AST), increasing the search granularity. Second, we
hypothesize that a program that contains an error in one area
likely m\plrmenb the correct behavior clsewhere [22

only statements from t

Search Based (Generate & Validate) APR

Techniques to identify
statement causing the
observed bug.

gﬁ©;B-> = =

A set of Test Buggy Program Fault localization

Cases/ Program
Properties

Patch Generation E [
\ : %

Patch Validation

RUHR
28 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Search-Based APR Tools

GenProg: A generic method for APR
SPR: Staged Program Repair with Condition Synthesis
History Driven Program repair

Prophet: Automatic patch generation by leaning correct code

= ... and many more

RUHR
29 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

GenProg

= Based on Genetic Programming
= A programming model for evolving programs

= |deology and terminology of biological evolution to
address program evolution

= Starting from a population of unfit (buggy) program —
apply operations analogous to natural genetic processes
— define a fitness function to evaluate evolved program

= Fitness function evaluates the quality of an evolved
program

= Given an input test suite of passing and failing test, creates
mutated programs (repairs) that solves the failing test

54 IEEE

ON SOFTWARE

VoL 38, NO. 1, 2012

GenProg: A Generic Method
for Automatic Software Repair

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, Senior Member, IEEE, and Westley Weimer

 legacy programs without formal

cpeciications, regram annotatons, o Specil coang practis. GenProg wses an oxanded form of Gonatc pogamming 1o &voe a
program variant that etains required functionaliy but is not susceptible to a given defect, using exising test uites to encode bath the

the original program to a minimal repair. We describe the algorithm and report experimental results of its success on 16 programs
totaling 1.25 M lines of C code and 120K lines of module code, spanning eight classes of defects, in 357 seconds, on average. We
analyze the generated repairs qualitatively and quanitatively to demonstrate that the process eficiently produces evolved programs
that repair the defect, are not fragile input memorizations, and do not lead to serious degradation in functionaliy.

Index Terms—Automatic programming, corrections, testing and debugging

1 INTRODUCTION

Snm\vm quality is a pernicious problem. Mature soft-
ware projects are forced to ship with both known and
unknown bugs [1] because the number of outstanding
software defects typically exceeds the resources available to
address them [2]. Software maintenance, of which bug
repair is a major component [3], [4], is time-consuming and
expensive, accounting for as much as 90 percent of the cost
of a software project [5] at a total cost of up to $70 billion per
year in the US [6], [7]. Put simply: Bugs are ubiquitous, and
finding and repairing them are difficult, time-consuming,
and manual processes.

Techniques for automatically detecting software flaws
include intrusion detection [8], model checking and light-
weight static analyses (9], [10], and software diversity
methods [11], [12]. However, detecting a defect is only half
of the story: Once identified, a bug must still be repaired. As
the scale of software deployments and the frequency of
defect reports increase [13], some portion of the repair
problem must be addressed automaticall

This paper describes and evaluates Genetic Program
Repair (“GenProg”), a technique that uses existing test cases
to automatically generate repairs for real-world bugs in off-
the-shelf, legacy applications. We follow Rinard et al. [14] in
defining a repair as a patch consisting of one or more code
changes that, when applied to a program, cause it to pass a
set of test cases (typically including both tests of required
behavior as well as a test case encoding the bug). The test

 C. Le Goues and W. Weinmer are with the Department of Computer Science,
Univesityof Virinia 85 Enginer's Wy PO B 00740, Chaitiesle,
VA 22904-4740. E-mail: legoues, weimer @

Fornest vt ot the Deparimint of onu,mm Science,
of New Mexico, MSCO1 1130, 1 University of New Mexico,
Albuguergue, NM 871310001, E-mai tnguen, foreetes o e
Manuscript received 16 Mar. 2010 revised 6 Oct. 2010; accepted 21 Sept.

2011; published online 30 Sept. 2011

Reconmmended for acceptance by [.M. Atlee and P. Inverardi

For informtionon obfalning reprits o ti articl, plase sed conalt

tscomputerr, aud e [EEECS Log Nuwber TSESL201005.0078
it Objet iontfier no. 10.1109/TSE 2011 104

cases may be human written, taken from a regression test
suite, steps to reproduce an error, or generated automati-
cally. We use the terms “repair” and “patch” interchange-
ably. GenProg does not require formal specifications,
program annotations, o special coding practices. GenProg’s
approach is generic, and the paper reports results demon-
strating that GenProg can successfully repair several types
of defects. This contrasts with related approaches which
repair only a specific type of defect (such as buffer overruns
[15], [16))-

GenProg takes as inputa program with a defect and a set of
test cases. GenProg may be applied either to the full program
source or to individual modules. It uses genetic programming
(GP) to search for a program variant that retains required
functionality but is not vulnerable to the defect in question.
GP s a stochastic search method inspired by biological
evolution that discovers computer programs tailored to a
particular task [17], [18]. GP uses computational analogs of
biological mutation and crossover to generate new program
variations, which we call variants. A user-defined fituess
function evaluates each variant; GenProg uses the input test
cases toevaluate the fitness, and individuals with high fitness
are selected for continued evolution. This GP process is
successful when it produces a variant that passes all tests
encoding the required behavior and does not fail those
encoding the bug. Although GP has solved an impressive
range of problems (e.g., [19]), it has not previously been used
cither to evolve off-the-shelf legacy software or to patch real-
world vulnerabilities, despite various proposals directed at
automated error repair, e.g., [20]

A significant impediment for GP efforts to date has been
the potentially infinite space that must be searched to find a
correct program. We introduce three key innovations to
address this longstanding problem [21]. First, GenProg
operates at the stafement level of a program'’s abstract syntax
tree (AST), increasing the search granularity. Second, we

aprogram that cont e
hkelv implements the correct behavior elsewhere [22].
herefore, GenProg uses only statements from the program

inonearea

Ot oy e it o, Dowrioace on Cooamee - g s UTC rom IEEE Xplre. Restictions ppy.

'o0se 5012751 00« 2012 B

Puiened by the IEEE Compuiar S

https://doi.org/10.1109/TSE.2011.104

30

Introduction into Automated Program Repair

RUHR

UNIVERSITAT
BOCHUM

RUB

Initial Population: Selection

= Selection of individual to serve as parents for next generation
= Aim to select better performing individuals
= Various selection techniques

= Stochastic universal sampling— probability of selection of a parent is directly
proportional to its fithess

= Tournament selection—a small subset of population are randomly selected (by a
tournament) and the most fit member of this subset is selected for next generation

RUHR
31 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Variants Generation: Crossover

= Program represented as tree structure (mostly as AST)
= Swap random parts in parents to produce new children

(D)
() (FLT)
OROROIBIT

By W102102 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=106389498

RUHR
32 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Variants Generation: Mutation

= Various types of mutations (syntactically correct)
= Intuitively, update (insert, remove, or delete) a parent node to obtain a new child

@
O (JFLTE))
0 © WUX®eILI

By W102102 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=106395515

RUHR
33 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

GenProg: Workflow

~

Passing test trace Higher weight
to the

Mutate
() 2 2
EE — | > statements
= executed
E l | exclusively on
failing tests _L
-) % y =

Failing test trace

i

Fault Localization

Fitness Function

RUHR
34 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Fault Localization

= Any statement executed by a negative test case contains an initial weight of 1.0
= Other statements are assigned weight 0.0
= these are never modified, i.e., these are consider not faulty

= The initial weight of statements executed by a negative test case is modified if they
are also executed by a positive test case

= Goal is to penalize statements that are more unique to negative tests
= No additional weights for statements frequencies (e.g., in a loop)

35

RUHR
Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Mutation

Ranked Fault
Input: Program P to be mutated. locations

Input: Path Pathp of interest.
Output: Mutated program variaiit.
for all (stmt;, prob,) € Pathp do
if rand(0,1) < prob; A rand(0,1) < W,,,; then
let op = choose({insert, swap, delete})
if op = swap then

1:

2

3 Mutation
4:

5 let stmt; = choose(P)

6

7

8

Operators

Pathpli] < (stmt;, prob;)

else if op = insert then Choose a statement

let stmt; = choose(P) from the same
Pathpli] < ({stmt;; stmt;}, prob,) program

10: else if op = delete then

11 Pathpl[i] — ({}, prob;)

12 end if

13: end if

14: end for

15: return (P, Pathp)

L RUHR
36 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Fithess Function

= Evaluate the quality of a program variant

= Each successful positive test is weighted by Wp .

= Each successful negative test is weighted by Wy, r

= Program variants that do not compile have zero fitness

= GenProg encode Wp,sr as 1 and Wy,.r as 10 in their evaluation setup

fitness(P) = Wposr X |{t € PosT | P passes t}|
+ Whegr % |{t € NegT | P passes t}|.

RUHR
37 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Crossover

Input: Parent programs P and Q.
Input: Paths Pathp and Pathg.
Output: Two new child program variants C' and D.
cutoff < choose(|Pathp|)
: C, Pathc < copy(P, Pathp)
: D, Pathp « copy(Q, Pathq)
: for i =1 to |Pathp| do
if © > cutoff then
Pathc[i] — PathQ[i]
PathD[z'] — Pathp[’i]
end if
end for
return (C, Pathc),(D, Pathp)

S b BD e

[S—

swap after the cutoff
point

c<Q
D&P

Crossover

38

Introduction into Automated Program Repair

RUHR
UNIVERSITAT
BOCHUM

RUB

GenProg: High level Pseudocode

Input: Program P to be repaired.
Input: Set of positive test cases PosT.
Input: Set of negative test cases NegT'.
Input: Fitness function f.

Input: Variant population size pop_size.
Output: Repaired program variant.

1: Pathpost «— Upe posr Statements visited by P(p) Localize and

20 Pathnegr < U, e noyr Statements visited by P(n) assign weight

3: Path « set_weights(Pathnegr, Pathpost)

4: Popul « initial_population(P, pop_size) pop_size = 40

5: repeat —

6: Viable — {(P, Pathp) € Popul | f(P) > 0}

7. Popul — 0

8: NewPop «— 0

9: for all (p1,p2) € select(Viable, f, pop_size/2) do .
10: <c1,c<2> o zrossover((ph) 2 Crgate new population
11: NewPop <« NewPop U {p1,p2,c1,c2} using crossover
12: end for
13: for all (V| Pathy) € NewPop do
14: Popul + Popul U {mutate(V, Pathy)} Mutate .the new
15: end for population

16: until f(V') = max_fitness for some V contained in Popul
17: return minimize(V, P, PosT, NegT)

RUHR
39 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Example

receive(packet);
switch (packet.value){
case 'DHCP':
data = packet.value;
break;
case 'IMAP':
data = packet.value;
break;
default:

data = packet.value; '

break;

¥

send(packet, flag);

Delete free(packet);

40 Introduction into Automated Program Repair

RUHR
UNIVERSITAT
BOCHUM

RUB

Limitations

= Overfitting of test cases — repairs that only pass a particular test suite

= Generated repairs may delete the functionality — pass the test case by removing the
functionality

= Limited search space

RUHR
41 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Template-based Repair

= Pre-defined repair patterns
= Replace a suspicious program location with defined repair pattern

Insert Null point checker FP2.1: + if (exp != null) {

FP2.2: + if (exp == null) return DEFAULT_VALUE;
e e €XPus

FP2.3: + if (exp == null) exp = expl;

e e €XPars}
FP2.4: + if (exp == null) continue;

e e €XPars}
FP2.5: + if (exp == null)

throw new IllegalArgumentException(...);

. €XPu s

+

Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019. TBar: revisiting template-based automated program repair. https://doi.org/10.1145/3293882.3330577

RUHR
42 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

RUHR
43 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Semantic-based APR

SemFix: Program Repair via Semantic Analysis

Concolic Program Repair
Newyen Dawei Qi Abhik Ropchoudury Suish Chandea
wpting. Natoal Univesity of Singpors, Singapors it

n Ridwan Sharifdeen’ Yannic Noller
{hoangdinduwibhik) @ comp.nus 3 Sathanda®s oo .

Natona Uiesity of Sgapore sl Univesiyof Singapore
ingapor

Lars Grunske A0k Roychoudhury
Humbold Universi s Bein
einformati u-berin e s cdusg

s o St o s ot s s 0 o s g (6 T
s o s g o thi techiue that th comee sxprcssion should
e mmgl«umu i st the progams e tchris ok “wibesiz
S i o s ot
s response 1 the imicion wold be Abstract Kepwords:program epsi, symbolic cxcuton,program
Aot g g e o YA i
g e w
oty a by program such that i pases g SR e ol Gl e
o e ebavsdo ot s e et i Progean Rpue I s of e
i and pache hat vt e avlable s (o i A SGTLAN et

s i ety e
.,.:m - ‘mnm“::m e g

tested bt desired nclionality) Wepropose an negrated 1o i
ing overiting ptches via o ok N, USA. 16 pge. i ko,

roamning b ey anh -
L ach towards program repsi,
sl by our dese to have

m

i nput
tematicly
Bug iving contiues o b & mostly manual, time consum 1 Introduction
ing,and herel n oft

Automated Program Repir 14,21 s an emerging tech
e i posran o ology Wwhich seks o sectfy érors o ulnersbilis
s al the gven tess, The repie onstints

software automatclly. Thre
Vi (conmild) uding mpron

g Im,uw.m alrng oysems o e

it
m.,m Rantonaiy .
; e e A e s e e rectne mal speific the prog
enly started hokin in Behaior e il nl svabie 1 1 conmon e
et e g The e o e o hen
o e i) ol n
s s the e et st e e e o
oo provies prcicl Frmdation of o progs e
e et enmenof ot (1
v csin

o o i o Hntaon ot
programs we can bandle
Gur spprosch is a combinstion of thresexising techaigues,
o H o 1< where ot prolem. The e i nd pto G SV CON
e s the ranking produced by 4 atical fult e presents he tof gradual comctess
it] ol s sy Wi e
Icchniques.) Our i ami 7 sciemen

i g e, bt therwie onge st eds s vt T,
of conet el

€CS Concepts: «Software and its engineer
aretenting and debugein e s ey

e pichs e culeh

o o
1t o 3 ke o o o A
St et e We ol
ot e m‘ o of te b

Ve e an

A Rl rpss wo e et
g e e e e e st i

; g v
et A . 1225, machneeaming e o o pc
i : i d fuzing b e augmentation [7).

e e um sos
am syihess Te thind idea 5 0 use componen
s syt 0 1110 syntesize an expreson
enfors 1 th spciaton diseovredbeor
The intcrplay of the sccond and third st s the priary
novely of our epair tool. The statementeve spocfc
oy psin s e . e search space sigificaty, ad sets up e pr

antee eve the ot basi
fec on the problem of atch verf
i our st 10 produ ptches which work

514673:076-313531 00 © 2013 IEEE. JoSE 2013, san oo

Semantic Repair (Constraint-based Repair)

= Construct a repair constraint that a program should satisfy
= Repair problem as a synthesis problem

= Use semantic approaches, e.g. symbolic execution, to extract the properties for the
function to be synthesized

= Synthesize the program that satisfies the repair constraints/program properties

RUHR
45 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Semantic Repair

0

‘ : _ _ :
Buggy Program Fault = Synthesize Repairs using Validate
Localization § Constraints solving
N —

/0 Extract Repair Constraints

£
Specification

(e.g., Test)

RUHR B
“° UNIVERSITAT
BOCHUM

An Example

int length, index = 0;
int height[10], breadth[8];
input(length);
while (index < length) {
height[index] = index + 1; Input - length = 11

) ++index; Constraint: index < sizeof(buff)

while (index < length & index < sizeof(height)) {

One potential repair.

Can generate more based on generated constraints.

47

Introduction into Automated Program Repair

RUHR
UNIVERSITAT
BOCHUM

RUB

Semantic Repair

Buggy Program Fault
Localization
Dy
£
Specification
(e.g., Test)

Symbolic
Execution

= —gF = ﬁ —> B = v

Synthesize Repairs using Validate
Constraints solving

{ I MI

Extract Repair Constraints

48

RUHR
UNIVERSITAT
BOCHUM

RUB

Symbolic Execution

introduced by King!"l and Clarkel?!

analysis of programs with unspecified inputs, i.e. execute a program with symbolic
inputs

symbolic states represent sets of concrete states

for each path, build a path condition

= condition on inputs — for the execution to follow that path

= check path condition satisfiability — explore only feasible paths
symbolic state

= symbolic values / expressions for variables

= path condition

MJames C. King. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (July 1976), 385-394.

u instru Ct|on p0| nter 2IL. A. Clarke, "A System to Generate Test Data and Symbolically Execute Programs," in IEEE Transactions
on Software Engineering, vol. SE-2, no. 3, pp. 215-222, Sept. 1976.

49

RUHR
Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Example: concrete execution

code that swaps 2 integers concrete execution path
v
int x, y; x=1,y=0
if (x > vy) | v
X =X + y; X >y 7true
y = X - Y; : ¥
X =X — V; x=1+0=1
if (x > v)) v
assert false; Y= 1-0="1
v
} x=1-1=0
v
0> 17?false
v
END

RUHR
50 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Example: symbolic execution

symbolic execution tree
code that swaps 2 integers path condition n

- \f‘ [True] x=X, y=Y]
= int x, Vy; e

if (X Y) { True X>Y7]

>

X=X+ Y Fali/ \Erue
= X
X

yoos [((x<v]END | [[X>V]x=X+Y |
X = - y,'

if (x >) | [X>Y]y=X+Y-Y=X |
assert false; L

| X>Y] x= X+YX Y |

| [X>Y] Y>X? |

Fals True
Hint: solve PCs to obtain test inputs EESAESECE CX>YAY>X>33‘9V”3'SG]

unsatisfiable !!!

RUHR
51 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Decision Procedures

= Used to check path conditions

= if path condition is unsatisfiable, backtrack

= solutions of statisfiable constraints used as test inputs
= SMT solvers

= Satisfiability Modulo Theories

= Given a formula first-order logic, with associated background theories, is the formula
satisfiable?

= See also:
= SMTLIB - library for SMT formulas (common format) and tools
= SMTCOMP - annual competition of SMT solvers
= Z3 - https://rised4fun.com/z3/tutorial

RUHR
52 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Symbolic Execution: Limitations

= Path explosion

= symbolically executing all program path does not scale well!
= Memory aliasing

= accessing same memory with difference aliases
= Arrays

= Array access with symbolic indexes are difficult to manage

RUHR
53 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

SemFix: Program Repair via Semantic Analysis

= APR technique based on symbolic execution,
constraints solving, and program synthesis

= Given a set of test cases
= requirement for the repair is formulated as a constraint

= solve the formulated constraint by iterating over a
space of repair expressions

SemFix: Program Repair via Semantic Analysis

Hoang Duong Thien Nguyen Dawei Qi

School of Computing, National University of Singapore, S
ik} @comp.nus.edu.sg

{hoangdtn dawes

Abstraci—Debugging consumes significant time and cffort in
any major software development project. Moreover, even afte
the root cause of a bug is identified, fixing the bug is non-trivial,
Given this situation, automated progeam repair methods are of
present an automated repair method

raing over 5 apered space
of s expresion, layered by y the complesty of he el
code. We compare our method with recnty proposed genci
Drogramming based repar on SIR progeams with sceded bugs,
“well a5 Trsgments of GNU Coreutls with eal s On these
sublets,our approsch eportsa highr suces e han gencic
progran repair, luces a repair faster.

I INTRODUCTION

Bug fixing continues to be a mostly manual, time consum-
ing. and therefore expensive activity in software development
Therefore, automated techniques (o repair buggy programs
can be of tremendous value. In particular, given that compute
cycles are cheap and abundant, it sense 10 investigate
techniques that help shift the “heavy lfting” of program repair
from the human 10 the computer. While a programmer might
not blindly trust a computer-generated fix to her code, her
task can become considerably easier: rather than figure out a
fix, just verify that an automatically generated fix is correct.
Not surprisingly, researchers have recently started looking into
automated program repair tools [11-{3].

We focus on general purpose programs, for which a test
suite is available as a way 1o tell whether the program is
working correctly (i.. it passes all the tests) or not (i. there
exits @ aling e, but othervise o fornal spccfaion
of correct behavior s available; this s generally the
practice (by contrast, kemels that manipulate data structures
ofien do have specifications, and automatic. repair on data
structure programs have been well studied, for example see [4],
[5]). A successful repair would be a modification of the
program such that it passes all the fests in the fest suite.

One of the most successful techniques in recent work that
works on general programs s based on syntactic search. The
premise behind this technique s that, once we know where the
defective expression is in the program, a correct expression
may be present syntactically at another place in the program,

ents

nique uses genetic
programming technique for searching over this space, and has

¥ihis i an oversimplification, but bosdly speaking tis i the ides

978-1-4673-3076-313/831.00 © 2013 |EEE 772

Abhik Roychoudhury Satish Chandra
pore IBM Research, US,
satishchandra@us.ibm.com

been shown to work for large programs [6]. The limitation
of this technique is that the correet expression should be
present in the program: the technique cannot “synthesize” an
appropriate expression from variables and constans.

‘Anobvious response to the limitation would be a search
over a space of syntactic expressions, without consideration of
whether those expressions appear elsewhere in the program.
Such an wmh ould e mors nhe R of i 7
[8]. However the space of repair expression is fixed
upfront (possibly as a set of templates), such a technique will
ot work. Furthermore, as our experimens show, cnumerating
over the set of possible repair templates is inefficient.

In'this paper, we explore a constraint based semantic
prosch, owards program repi. Th reaie consrins e
generated by ire to have the repaired program pass
e v e cass. Thus, givn & program locaion 1 be
ixed, we derive constraints on the expression (o appear in
the program location, in order to have the changed program
pass all the given tests. The repair constraints are generated
via (controlled) symbolic exceution and the expression to be
repaired is obtained via program synthesis. We report that,
for certain kinds of program and bugs, the semantics-based
approach can not only have a higher-success rate than a
syntactic search-based approach, but also be able to produce
a repair fuster. At the same time, we do believe that symbolic
execution imposes certain scalability limitations on the size of
programs we can handle

Our approach is a cm\vbumllmv of three existing techniques.

« Fault isolaion, i.e. where to fix the problem. The tech-
e s he rnking produced by stsical
isolation (9] tool (it shares this step with the search-based
techniques.) Our approach examines one buggy statement

ime from a ranked suspicion report of statements.

« Statement-level specification inference. We automatically
discover the correct specification of the buggy statement
We use an idea similar to the one used in angelic

i [10] in converting an n epreson o 2 -
istic expression. This siep allows us to create,
for cach Inpu 1o th bugsy Saement, the owput ht

would have resulted in the test passing.

« Program synthesis. The third idea is 10 use component-
based synthesis idea [11] to synthesize an expression that
conforms to the specification discovered before.

“The inter-play of the second and third steps s the primary

novelty of our repair tool. The statement-level specification
narrows the search space significantly, and sets up the problem

ICSE 2013, San Fancisco, A USA

12028 £ Xplore. Fstritons s9ply.

https://doi.org/10.1109/ICSE.2013.6606623

54

Introduction into Automated Program Repair

RUH

UNIVERSITAT

BOCHUM

w RUB

Workflow of SemFix

Statement

Ranking

——————————

Repair
Constraint

2
Program

Synthesis

-

——————————

KLEE is a symbolic execution engine built on top of the LLVM Compiler infrastructure:

https://klee.qgithub.io

Y

Repair l

55 Introduction into Automated Program Repair

RUHR
UNIVERSITAT
BOCHUM

RUB

https://klee.github.io

Example

Code excerpt from Tcas (Traffic collision avoidance system)

1.int is_upward_preferred (int inhibit, int up_sep, int down_sep) {

2. int bias;
3. if (inhibit)
4, bias = down_sep; //fix: bias=up_sep+100
5. else
6. bias = up_sep;
7. if (bias > down_sep)
8. return 1;
9. else Test Inputs Expected | Observed St
10. return 0: inhibit | up_sep | down_sep output output
PremmE I I 0 100 0 0 pass
2 1 11 110 1 0 fail
3 0 100 50 1 1 pass
4 1 -20 60 1 0 fail
) 0 0 10 0 0 pass
Test Suite observing the fault
RUHR
56 Introduction into Automated Program Repair UNIVERSITAT RUB
BOCHUM

Fault Localization (using Tarantula)

Code excerpt from Tcas (Traffic collision avoidance system)

1.int is_upward_preferred (int inhibit, int up_sep, int down_sep) {

2. int bias;
3. if (inhibit)
4, bias = down_sep; //fix: bias=up_sep+100
5. else
6. bias = up_sep;
7. if (bias > down_sep)
8. return 1;
9. el ;
lo?rzum 0: Line Score Rank
4 0.75 1
10 0.6 2
3 0.5 3
7 0.5 3
Faulty Statements ¢ 0 5
along with their 8 0 5

rankings

Inputs Expected | Observed
LSt inhibit up_sI;p down_sep ogtput output SIS
1 1 0 100 0 0 pass
2 1 11 110 1 0 fail
3 0 100 50 1 1 pass
4 1 -20 60 1 0 fail
D 0 0 10 0 0 pass

Test Suite observing the fault

57

Introduction into Automated Program Repair

RUHR

UNIVERSITAT
BOCHUM

RUB

Repair Synthesis and Symbolic Execution

Code excerpt from Tcas (Traffic collision avoidance system)

1.int is_upward_preferred (int inhibit, int up_sep, int down_sep) {
2. int bias;

3. if (inhibit)

4, bias = down_sep; //fix: bias=up_sep+100

5. else
6. bias = up_sep;
7. if (bias > down_sep) . . .
8. return 1; Faulty Statement Repair Expression Available vars
9. else inhibi

. . . _ . inhibit, up_sep,
10. return 0: bias = down_sep; bias = f(..); down_sep, bias;

f(int inhibit, int up_sep, int

£(); f(int inhibit, int up_sep, int down_sep) ;

down_sep, int bias);

Uninitialized, thus non-usable

58

RUHR
Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Repair Synthesis and Symbolic Execution

Repair Expression

bias = xkf(int inhibit, int up_sep, int down_sep) ;s*k
find the constraint to be satisfied by f(...) to pass all test
A Symbolic execution based on Test 2
iunhits)i;: . 11 1 Test Inputs Expected | Observed St
dgam F;ep: 10 inhibit | up_sep | down_sep output output
bias: X 1 1 0 100 0 0 pass
PC: true 2 1 11 110 1 0 fail
3 0 100 50 1 1 pass
4 1 -20 60 1 0 fail
S 0 0 10 0 0 pass
nhibit: 1 — 1 10 1. int is_upward_preferred (int inhibit, int up_sep, int down_sep)
up_sep: 11 up_sep: " 2. int bias;
down_sep: 110 down_sep: 110 3. if (inhibit)
bias: X bias: X 4., bias = down_sep; //fix: bias=up_sep+100
PC: X>110 PC: X<110 % bias = up_sep;
return 1 return 0 7: if (bias > dov_m_sép)
8. return 1;
pass fail 9. else
10. return 0:
RUHR
59 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Repair Synthesis and Symbolic Execution

inhibit: 1
up_sep: 11
down_sep: 110 1. int is_upward_preferred (int inhibit, int up_sep, int down sep)
bias: X , { b
: . int bias;
PC: true 3. if (inhibit)
4, bias = down_sep; //fix: bias=up_sep+100
5. else
6. bias = up_sep;

7. if (bias > down_sep)
10 8.return 1;

inhibit: 1 inhibit: 1 9. else
up_sep: 1" up_sep: 1 10. return 0:
down_sep: 110 down_sep: 110
bias: X bias: X
PC: X>110 PC: X<110
return 1 return 0
pass fail
At line 4: inhibit == 1, up_sep = 11, down_sep = 110

bias = f(1, 11, 110); i.e., f(1, 11, 110) > 110
X >110

More constraints from given tests

f(1, 0, 110) <= 100 and f(1, -20, 60) > 60

RUHR
60 Introduction into Automated Program Repair UNIVERSITAT
BOCHUM

RUB

Repair Synthesis and Symbolic Execution

Repair Constraint to satisfy

(f(1,11,110) > 110 A £(1,0,100) < 100 A £(1,—20,60) > 60)

f (inhibit,up_sep, down_sep) = up_sep + 100

constants, +, -, ...

f (inhibit, up_sep, down_sep) = up_sep — (—100)
Ingredients

Component-Based Program Synthesis

RUHR
61 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

SemFix: Highlights

= Generate repairs by modifying only one statement
= Generated repair depends on the given test suite
= Synthesize expression only on the right hand side of assignments/branch predicates
= The generated repair has one of the following two forms:
= x=f _buggy (...) = x=f(...)
" if(f_buggy) — if(f(...))

62

RUHR
Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Limitations

= Accuracy decreases with increasing number of tests
= Depends on test suite — Overfitting problem
= Single line repairs only

RUHR
63 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Concolic Program Repair

Input Space Patch Space

initial test case refined patch set

Concolic Program Repair

correct
patch
(set)

plausible
patches

explored path
(input partition)

infeasbility
checks in both

represented with
abstract patches

directions

https://doi.org/10.1145/3453483.3454051

RUHR
64 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

CPR: Inputs
a Input)

CVE-2016-3623:
Divide by Zero in LibTIFF v4.0.6

e.g., exploit as
TIFF picture

/’ =

source location, (fix template),
synthesis components

formula about correct behavior
in SMT format

-
=
==

=

static int
cvtRaster (TIFF* tif, uint32* raster, uint32 width, uint32 height)
{
uint32 y;
tstrip t strip = 0;
tsize t cc, acc;
unsigned char* buf;
uint32 rwidth = roundup(width, horizSubSampling) ;
uint32 rheight = roundup (height, vertSubSampling);
uint32 nrows = (rowsperstrip > rheight ?
rheight rowsperstrip) ;

: s wtpows, vertSubSampling) ;
if (CONDITION) return O;

potential divide-by-zero error */
cc = rnrows*rwidth + 2 * ((rnrows*rwidth)
/ y(horizSubSampling*vertSubSampling)),

| |
) observation

(assert (= false (= observation 0)))

65 Introduction into Automated Program Repair

RUHR
UNIVERSITAT
BOCHUM

C P R : WO rkfl OW independent -from 10}

Input

test suite

Concolic Program Repair path Output N

exploration

new input

pr°t9r"rarf' reduced
synthesis patch pool

constraint ¢

anytime algorithm
(gradual improvement)

refinement based on
explored paths and

specification /

RUHR
66 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

CPR: Conclusions

= Challenge 1: correctness

= overfitting to test cases or scenarios without test cases

= needs other types of specification, e.g., user-provided constraints
= Challenge 2: usability (integration into software development)

= patch presentation - efficient ranking

= efficient patch generation - rich and abstract patch space

RUHR
67 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

RUHR
68 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Learning-based APR

Learning-based APR

= Many proposed approaches that learn code transformations from code corpus
= Neural Machine Translation (NMT)
= Sequence-to-Sequence Translation

= The learning based repair techniques do not rely on pre-defined transformation
operators, enabling them to generate abundant kinds of patches by learning from
history patches.

= |n case of generating uncompilable or incorrect patches, the auto-generated patches by
learning-based APR can also be validated using compilers and available test cases just
like traditional APR techniques.

= However, the early learning-based APR also had a main limitation that they had been
trained on limited number of projects and hence only limited number of
programming features.

RUHR
Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Automated Program Repair via Conversation:
Fixing 162 out of 337 Bugs for $0.42 Each using ChatGPT

Chungqiu Steven Xia
University of Illinois at Urbana-Champaign
Urbana, USA
chungiu2@illinois.edu

Abstract

Automated Program Repair (APR) aims to automatically generate
patches for buggy programs. Traditional APR techniques suffer from
alack of patch variety as they rely heavily on handcrafted or mined
bug fixing patterns and cannot easily generalize to other bug/fix
types. To address this limitation, recent APR work has been focused
on leveraging modern Large Language Models (LLMs) to directly
generate patches for APR. Such LLM-based APR tools work by first
constructing an input prompt built using the original buggy code and
then querying the LLM to either fill-in (cloze-style APR) the correct
code at the bug location or to produce a completely new code snippet
as the patch. While the LLM-based APR tools are able to achieve
state-of-the-art results, they still follow the classic Generate and
Validate (G&V) repair paradigm of first generating lots of patches
by sampling from the same initial prompt and then validating each
one afterwards. This not only leads to many repeated patches that
are incorrect, but also misses the crucial and yet previously ignored
information in test failures as well as in plausible patches.

To address these aforementioned limitations, we propose CHA-
TREPAIR, the first fully automated conversation-driven APR approach
that interleaves patch generation with instant feedback to perform
APR in a conversational style. CHATREPAIR first feeds the LLM with
relevant test failure information to start with, and then learns from
both failures and successes of earlier patching attempts of the same bug
for more powerful APR. For earlier patches that failed to pass all tests,
we combine the incorrect patches with their corresponding relevant
test failure information to construct a new prompt for the LLM to
generate the next patch. In this way, we can avoid making the same
mistakes. For earlier patches that passed all the tests (i.e., plausible
patches), we further ask the LLM to generate alternative variations
of the original plausible patches. In this way, we can further build on
and learn from earlier successes to generate more plausible patches

Lingming Zhang
University of Illinois at Urbana-Champaign
Urbana, USA
lingming@illinois.edu

CCS Concepts
« Software and its engineering — Software testing and debug-
ging.

Keywords
Automated Program Repair, Large Language Model

ACM Reference Format:

Chungiu Steven Xia and Lingming Zhang. 2024. Automated Program Repair
via Conversation: Fixing 162 out of 337 Bugs for $0.42 Each using ChatGPT.
In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA "24), September 16-20, 2024, Vienna, Austria. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3650212.3680323

1 Introduction

Automated Program Repair (APR) [22, 24] is a promising approach
to automatically generate patches for bugs in software. Traditional
APR tools often use the Generate and Validate (G&V) [44] paradigm
to first generate a large set of candidate patches and then validate
each one against the original test suite to discover a set of plausible
patches (which pass all the tests). These plausible patches are then
given to the developers to find a correct patch that correctly fixes
the underlying bug. Traditional APR techniques can be categorized
into template-based [23, 26, 40, 41, 49], heuristic-based [35, 37, 67]
and constraint-based [16, 34, 43, 50] ones. Among these traditional
techniques, template-based APR tools, using handcrafted or mined
repair templates to match and fix buggy code patterns, have been
regarded as the state-of-the-art [3, 23, 40]. However, template-based
tools suffer from lack of patch variety as they cannot easily generalize
to bugs and patterns outside of the list of pre-defined templates.
To address the limitations of traditional APR tools, researchers
have proposed learning-based APR approaches that leverage ad-

vancegin Deen T earning [earni: h; d 1 are mainly

https://doi.org/10.1145/3650212.3680323

= recent advances in Large
Language Models (LLM),
however, show very strong
results!

= LLM as component that can
generate patchess

= conversational repair to
improve generated patches

71

Introduction into Automated Program Repair

RUHR
UNIVERSITAT
BOCHUM

You are an Automated Program Repair Tool
9,

Few-Shot Examples <&
The following code contains a buggy line that has been removed.

. e Previous Bug Fixes
JSType result = builder.build();

>>> [INFILL] <<<
return result;
} else if (this.isObject() && that.isObject()) {

JSType result = builder.build();
if (result != null) {

return result;
} else if (this.isObject() &&
that.isObject()) {

This was the original buggy line which was removed by the infill
location

if (result != null) {

‘The code fails on this test:
testGreatestSubtypeUnionTypes5()

on this test line:

assertEquals(NO_OBJECT_TYPE,
errUnion.getGreatestSubtype (STRING_OBJECT_TYPE));
“with the following test error:

expected:<NoObject> but was:<None>

ase provide the correct line at the infill Tocation.
Gf!

Buggy Function

Error: assertion failed on line:

Error: assertion failed on line:

Failing test info

created prompt O”O
or feedback info 11 l ChatChljoubut

N e —————————— . ————

The following code contains a buggy hunk that has been removed.

»n

e

JSType result = builder.build(); 3
>>> [INFILL] <<< e}
o

return result; 1

} else if (this.isObject() && that.isObject)) { | 2
]

N =

)

This was the original buggy hunk which was removed by the infill 3
E}

location

The following code contains a bug

&
-9Tbuts | 1d

JSType result = builder.build();
if (result != null) {

return result;
} else if (this.isObject() && that.isObject()) {

The code fails on this test:

)
J
3dwoad uotriouny

Conversation Feedback Initial Prompt Construction

compile & test The correct line at the infill location would be The following code contains a buggy line that has been removed. g
The fixed version is still not correct. . . q o
code has the following compilation error: if (!(result instanceof NoObjectType)) | JSType result = builder.build(); ;
error: cannot find symbol (NoObjectType) |??9| >>> [INFILL] <<<
Llease provide the correct line at the infill Tocation. S return result; 0
R 3) Sorry for the mistake, the correct line at the infill } else if (this.isObject() & that.isObject()) { QlT
= location should be . c
compile & test &——— if (!(result instanceof UnionType)) & g.)_
The fixed version is still not correct. iO 9 Tt be fixed by th ble li X ¥ . (=
till does not fix the original test failure e bl T e el e Here is another possible fixed line: =
Apologies for the mistake, the correct line at the infill 1. if (!result.isNoType()) { o
compile & test location should be 2 : 3 2ot o
The patch passes all tests! if (fresult.isNoType() { « OB EE } | compile & 2
L i I Please generate an alternative fix line. n P o)
A\~ test =5
RUHR
72 Introduction into Automated Program Repair UNIVERSITAT

BOCHUM

Table 1: Correct fixes on Defects4j

Dataset CHARTREPAIR BaseChatGPT CodexRepair FitRepair AlphaRepair SelfAPR RewardRepair Recoder TBar CURE

Chart 15 9 9 8 9 7 5 10 11 10
Closure 37 23 30 29 23 19 15 21 16 14
Lang 21 15 22 19 13 10 7 11 13 9
Math 32 25 29 24 21 22 19 18 22 19
Mockito 6 6 6 6 5 3 3 2 3

Time 3 2 3 3 3 3 1 3 3 1
D4J 1.2 114 80 99 89 74 64 50 65 68 57
D4]J 2.0 48 25 31 44 36 31 25 11 8 -

RUHR
73 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Agentic Workflows

= Build a software engineering agent that can help with software maintenance!

AutoCodeRover: Autonomous Program Improvement

Yuntong Zhang
National University of Singapore
yuntong@comp.nus.edu.sg

Haifeng Ruan
National University of Singapore
hruan@comp.nus.edu.sg

significantly impacted the development process, where developers
can use LLM-based p i to achieve d
coding. Nevertheless, software engineering involves the process
of program improvement apart from coding, specifically to enable
software maintenance (e.g. program repair to fix bugs) and software
evolution (e.g. feature additions). In this paper, we propose an auto-
mated approach for solving Github issues to autonomously achieve
program improvement. In our approach called AUTOCODEROVER,
LLMs are combined with sophisticated code search capabilities, ul-
timately leading to a program modification or patch. In contrast to
recent 11 M agent annroaches from AT researchers and nractitioners

Zhiyu Fan Abhik Roychoudhury
National University of Singapore National University of Singapore
zhiyufan@comp.nus.edu.sg abhik@comp.nus.edu.sg
Abstract CCS Concepts
Researchers have made significant progress in automating the soft- « Software and its engineering — Automatic programming;
ware development process in the past decades. d tech- i software; Software testing and debugging; - Com-
niques for issue summarization, bug reproduction, fault localiza- puting methodol — Natural pr ing
tion, and program repair have been built to ease the workload of
developers. Recent progress in Large Language Models (LLMs) has Keywords

large language model, automatic program repair, autonomous soft-
‘ware engineering, autonomous software improvement

ACM Reference Format:

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. 2024.

AutoC r Program Imp In P of

the 33rd ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA '24), September 16-20, 2024, Vienna, Austria. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3650212.3680384

1 Beyond Automatic Programming

cofiacn tc boglos Voo lovo boow o ciicion

https://dl.acm.org/doi/pdf/10.1145/3650212.3680384

1v2 [cs.SE] 28 Oct 2024

RepairAgent: An Autonomous, LLM-Based
Agent for Program Repair

Michael Pradel
University of Stuttgart

Premkumar Devanbu
UC Davis

Islem Bouzenia
University of Stuttgart

Germany USA Germany

fi_bouzenia@esi.dz

Abstract—Automated program repair has emerged as
a powerful technique to mitigate the impact of software
bugs on system reliability and user experience. This paper
introduces RepairAgent, the first work to address the pro-
gram repair challenge through an autonomous agent based
on a large language model (LLM). Unlike existing deep
learning-based approaches, which prompt a model with a
fixed prompt or in a fixed feedback loop, our work treats
the LLM as an agent capable of autonomously planning
and executing actions to fix bugs by invoking suitable tools.
RepairAgent freely interleaves gathering information about
the bug, gathering repair ingredients, and validating fixes,
while deciding which tools to invoke based on the gathered
information and feedback from previous fix attempts. Key
contributions that enable RepairAgent include a set of
tools that are useful for program repair, a dynamically
updated prompt format that allows the LLM to interact
with these tools, and a finite state machine that guides the

ptdevanbu@ucdavis.edu

michael @binaervarianz.de

The current state-of-the-art in APR predominantly
revolves around large language models (LLMs). The
first generation of LLM-based repair uses a one-time
interaction with the model, where the model receives a
prompt containing the buggy code and produces a fixed
version [17], [18]. The second and current generation of
LLM-based repair introduces iterative approaches, which
query the LLM repeatedly based on feedback obtained
from previous fix attempts [19], [20], [21].

A key limitation of current iterative, LLM-based repair
techniques is that their hard-coded feedback loops do
not allow the model to gather information about the
bug or existing code that may provide ingredients to
fix the bug. Instead, these approaches fix the code
context that is provided in the prompt, typically to the

https://arxiv.org/pdf/2403.17134

74

Introduction into Automated Program Repair

RUHR
UNIVERSITAT
BOCHUM

SpecRover

N

(__) Optional Input
e ™ Inferred Spec
=5
Issue \ .| Reproducer Reproducer Context Buggy Function
Statement j g Agent Test /7| Retrival Agent g Locations Summaries
—_—— — A
(Regression \
_ Test Suite /
(Reviewer) SeAIZ;:tr:(t)n
eclbach patch not OK

v v patch v
. i OK — ~ _No (
Patching Patch Reviewer —><"Regression? » Final Patch
Agent Agent >

https://arxiv.org/pdf/2408.02232

RUHR
75 Introduction into Automated Program Repair UNIVERSITAT R U B
BOCHUM

Outlook on other topics

= Effective and Efficient patch validation
= How to validate the correctness of the applied patch?
= Will the patch introduce new problems?
= |s the patch functionally correct?
= Trust in APR: what do the developers think?
= Other non-functional qualities, e.g., security and performance
= Patch Complexity (single-line, single-hunk/multi-line, multi-hunk)
= Static Analysis and APR, Fuzzing/Testing and APR
= Industry Applications: Facebook/Meta and Bloomberg (= APR in the CI pipeline)
= APR in CS Education
= A central program repair website — https://program-repair.org

76

RUHR

Introduction into Automated Program Repair UNIVERSITAT
BOCHUM

RUB

https://program-repair.org/

Summary

= Motivation for Automated Program Repair: Bugs! and the time to fix them!
= Components of APR
= Automated Fault Localization
= Types of Automated Program Repair (APR)
= Search-based (Generate and Validate)
= Semantic-based
» |[earning-based
= APRin the era of Large Language Models (LLM)
= Agentic Workflows for APR

77

RUHR
Introduction into Automated Program Repair UNIVERSITAT

BOCHUM

RUB

