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§ automated software engineering
§ software testing & verification (e.g., symbolic execution and fuzzing)
§ software repair (e.g., semantic-based)
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Automated
Program Repair

Machine Learning 
Analysis

Software Testing

Human Factors 
in SE

Intelligent Tutoring 
Systems

https://informatik.rub.de/en/sq/

developing new repair 
techniques to aid developers 

in fixing program bugs

automated analysis, testing, 
and repairing of machine 

learning models

exploring and designing 
(hybrid) testing techniques 
to systematically generate 

test inputs that expose 
incorrect program behavior

how to help CS students 
learn programming by 

applying concepts from 
automated testing and 

repair to guide the students 
toward the right solution

studying developer needs and 
requirements for successful deployment 

of testing and repair techniques in 
development practice

https://informatik.rub.de/en/sq/
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Bugs are Rising
§ A study of over 5000 bugs found by 

OSS-Fuzz in the last 5 years
§ More than 50% of the bugs are 

security bugs, e.g., overflows
§ Median time to fix non-flaky bugs: 

approx. 5 days
§ Some remain unfixed for long 

time
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Issue 20000
Reported by ClusterFuzz
on Fri, Jan 10, 2020
7:15 AM EST

Status: Verified (Closed)
Modified: Feb 10, 2020

Labels:
Reproducible
7 others. . .

Project: binutils
Fuzzing Engine: libFuzzer
Fuzz Target: fuzz disassemble
Platform Id: linux

Crash Type: Unsigned-integer-overflow
Sanitizer: undefined (UBSAN)
Regressed: oss-fuzz.com/revisions?job=omitted

&range=201912170318:201912190318
Reproducer Testcase: oss-fuzz.com/download
?testcase id=omitted

Comment 1 by ClusterFuzz on Jan 11, 2020, 10:24 AM EST
ClusterFuzz testcase. . . is verified as fixed in link to fix code commit range.

Comment 2 by sheriffbot on Feb 10, 2020, 1:10 PM EST
This bug has been fixed for 30 days. It has been opened to the public.

Fig. 2: An OSS-Fuzz bug report. Some details are omitted or
edited for brevity. Original report at https://bit.ly/3oaLhCp

“Platform” used, and the “Crash Type” of the bug. To aid bug
reproduction, the report indicates which “Sanitizer” was used,
the range and time window of commits where the software
“Regressed,” and a “Reproducer Testcase” to trigger the bug.
After ClusterFuzz verifies that the bug is fixed, it posts a
comment indicating the commit range where the software
was fixed. Sheriffbot tracks disclosure deadlines and posts
comments to warn about approaching deadlines (if a bug is
still unfixed) or notify that a bug passed a disclosure deadline.

We use Selenium [22], a browser automation tool, with
Google Chrome to scrape OSS-Fuzz bug reports on Mono-
rail. We ethically scrape data in accordance with Monorail’s
robots.txt file [23]. We extract data fields from the bug reports’
text via pattern matching. We scrape 23,907 bug reports from
316 projects, with report dates spanning from May 2016 to
October 20201.

IV. FAULT CHARACTERISTICS

To gain a better sense of the landscape of OSS-Fuzz bugs,
we begin by examining the following fault characteristics:
Fault type A categorization of faults; e.g., timeout, out of

memory, null dereference.
Flakiness Whether a bug is reliably reproducible.
Fuzz blocker Whether a fuzzer encounters the same bug very

often, which blocks further fuzzing of downstream code.
Unfixedness Whether a bug is unfixed.
CVE Whether a bug has an associated record in the Common

Vulnerabilities and Exposures (CVE) system [24].
The remainder of the section motivates, describes, and

analyzes these characteristics individually, and examines re-
lationships between them.

A. Fault types

Fuzzing is often discussed in the context of software se-
curity as an effective tool for uncovering security vulnera-
bilities [2], [6], [25]–[32], particularly in finding buffer and
numeric overflows — two of the most common software

1due to OSS-Fuzz’s disclosure policy, not all bug reports from July–October
2020 were publicly available at the time of data collection.

Fig. 3: Numbers of bugs among the top 15 fault types.

security vulnerabilities [33]–[36]. Prior advances in fuzzing
research targeted specific fault types, such as timeouts [37]–
[39], out of memory errors [40], [41], integer overflows [42],
or buffer overflows [43]–[46]. The attention on fuzzing as a
security testing technique and prior work on targeting specific
fault types motivates the following question:
RQ-FT Which fault types do OSS-Fuzz’s coverage-guided

fuzzers frequently find?
a) Methodology: To determine fault type, we use the

“Crash Type” field in bug reports (e.g., in Figure 2, the
“Crash Type” is “Unsigned-integer-overflow”). We standardize
some text (e.g., group together “timeout” and “hang”, or
“null dereference” and “null reference”), and we consolidate
heap, stack, and global overflows and underflows into buffer
overflow. We group together “null dereference read” and
“null dereference write,” since reading or writing to a null
address usually have similar consequences. For the opposite
reasons, we distinguish between “buffer overflow read” and
“buffer overflow write,” since overreads primarily threaten
confidentiality, while overwrites also threaten integrity and can
lead to arbitrary code execution.

b) Results: Figure 3 shows the number of bugs among
the top 15 fault types. Six of the most common fault types
comprising 52% (12316/23907) of bugs — timeout, out of
memory, null dereference, stack overflow, memory leak, and
signal abrt — primarily harm availability by crashing. While
such crashes might facilitate other attacks that compromise
confidentiality or integrity by, for example, exposing poten-
tial vulnerabilities in the error-handling process, such crash-
inducing faults are likely less severe in their own capacity.✏
�

�
�

The majority of fuzzer-found bugs primarily harm avail-
ability.

Four fault types comprising 23% (5613/23907) of bugs
— integer overflow, assertion violation, undefined shift, and
divide by zero — indicate unintended program logic. Such

Z. Y. Ding and C. Le Goues, "An Empirical Study of OSS-Fuzz Bugs," MSR 2021, https://doi.org/10.1109/MSR52588.2021.00026

https://doi.org/10.1109/MSR52588.2021.00026
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Repairs — (often) Simple but not Straightforward
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void run
if

if

else

//...

public synchronized void run() { 

Commit message: 

Add sync when processing asynchronous operation in NIO. The NIO 
poller seems to create some unwanted concurrency, causing rare CI 
test failures......It doesn't seem right to me that there is concurrency 
here, “but it's not hard to add a Sync.” 

Apache Tomcat Faulty Commit #7040497fa

Correct Commit #29f060adb

void run
if

if

else

//...
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Repairs — (often) Simple but not Straightforward
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int 0
int 10 8
input
while

1

length = 11
Buffer 
Overflow

How do we 
fix this?

1. while

2. while

3. int 20

4. if

Potential Repairs

while 0
1

Buggy Program
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Cost of Repairs
§ Maintenance constitutes the major 

cost of software development
§ It costs ≈ $312 billion per year
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http://www.prweb.com/releases/2013/1/prweb10298185.htm
https://sceweb.sce.uhcl.edu/helm/WEBPAGES-SoftwareEngineering/myfiles/TableContents/Module-13/software_maintenance_overview.html
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Software Development Life-Cycle

Introduction into Automated Program Repair10 

Xiang Gao, Yannic Noller, and Abhik Roychoudhury. "Program repair.“, 2022, https://arxiv.org/abs/2211.12787

Automated Program Repair

Correct software evolution
via

Automated Program Repair

“50-75% of cost of projects is in debugging.”  

“Adding manpower to a late software project makes it later”
“The mythical man-month”, Fred Brooks, Turing Awardee

Fix issues Debug

Write new code

Send for 
integration 
testing

Programming: Software Lifecycle

1

Lead PI
Abhik Roychoudhury,
Provost’s Chair Professor, NUS

Project PIs
Wei-Ngan Chin, Associate Professor, NUS
Ilya Sergey, Associate Professor, NUS
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Automated Program Repair (APR)
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Buggy Program
Locate Bug Find a fix Validate 

the fix Repaired Program
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Roadmap
§ Brief Introduction
§ Fault localization
§ Types of Automated Program Repair (APR)

§ Search-based (Generate and Validate) 
§ Semantic-based
§ Learning-based 

§ APR in the era of Large Language Models (LLM)
§ (Repair of Security Vulnerabilities)
§ Challenges in Program Repair: Overfitting and Ranking
§ Real World applicability of APR tools — Solution and challenges

Introduction into Automated Program Repair13 
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Locate Bug Find a fix Validate 

the fix Repaired Program

Main Components
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Step 1 Step 2 Step 3

Fault 
Localization

Spectrum 
Based

Semantic 
Based

Patch 
Generation

Patch 
Validation

Test
Based

Verification
Based
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Types of APR
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https://nus-apr.github.io/

State-of-the-art in Program Repair: Pictorial view derived from Communications of the ACM article 2019.



Automated 
Fault Localization
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Fault Localization
§ Metric-based
§ Program dependence-based
§ Artificial Intelligence-based
§ Statistics-based
§ Mutation-based

Introduction into Automated Program Repair17 
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Metric Based Fault Localization
§ For each program element, outputs a suspiciousness score
§ Intuition: Program elements executed in failing test cases are likely to be faulty

§ passed(s) : number of passing test cases executed the statement s
§ totalpassed: total number of passed test cases
§ failed(s): number of failing test cases executed the statement s
§ totalfailed: total number of failing test cases

Introduction into Automated Program Repair18 
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(1/4) Run test cases

Introduction into Automated Program Repair19 
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(2/4) Statement Coverage

Introduction into Automated Program Repair20 
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(2/4) Compute Statement Coverage

Introduction into Automated Program Repair21 
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(3/4) Compute Suspiciousness score
§ Different metrics to compute suspiciousness score 

§ Tarantula
§ Occhia
§ Op2
§ Barinel
§ Star
§ ...

Introduction into Automated Program Repair22 
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(3/4) Tarantula
§ First proposed technique for the fault localization 

Introduction into Automated Program Repair23 
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(4/4) Prioritising Statements
§ A Program Repair technique requires 

to know which statement it has to fix 
first

§ Solution: Prioritise by the suspicion 
score

Introduction into Automated Program Repair24 
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Patch Generation
§ With a list of suspicious locations, the next step is to correct them!
§ Multiple approaches exist:

Introduction into Automated Program Repair26 



Search-based APR
GenProg: A Generic Method

for Automatic Software Repair
Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, Senior Member, IEEE, and Westley Weimer

Abstract—This paper describes GenProg, an automated method for repairing defects in off-the-shelf, legacy programs without formal

specifications, program annotations, or special coding practices. GenProg uses an extended form of genetic programming to evolve a

program variant that retains required functionality but is not susceptible to a given defect, using existing test suites to encode both the
defect and required functionality. Structural differencing algorithms and delta debugging reduce the difference between this variant and

the original program to a minimal repair. We describe the algorithm and report experimental results of its success on 16 programs
totaling 1.25 M lines of C code and 120K lines of module code, spanning eight classes of defects, in 357 seconds, on average. We

analyze the generated repairs qualitatively and quantitatively to demonstrate that the process efficiently produces evolved programs
that repair the defect, are not fragile input memorizations, and do not lead to serious degradation in functionality.

Index Terms—Automatic programming, corrections, testing and debugging.

Ç

1 INTRODUCTION

SOFTWARE quality is a pernicious problem. Mature soft-
ware projects are forced to ship with both known and

unknown bugs [1] because the number of outstanding
software defects typically exceeds the resources available to
address them [2]. Software maintenance, of which bug
repair is a major component [3], [4], is time-consuming and
expensive, accounting for as much as 90 percent of the cost
of a software project [5] at a total cost of up to $70 billion per
year in the US [6], [7]. Put simply: Bugs are ubiquitous, and
finding and repairing them are difficult, time-consuming,
and manual processes.

Techniques for automatically detecting software flaws
include intrusion detection [8], model checking and light-
weight static analyses [9], [10], and software diversity
methods [11], [12]. However, detecting a defect is only half
of the story: Once identified, a bug must still be repaired. As
the scale of software deployments and the frequency of
defect reports increase [13], some portion of the repair
problem must be addressed automatically.

This paper describes and evaluates Genetic Program
Repair (“GenProg”), a technique that uses existing test cases
to automatically generate repairs for real-world bugs in off-
the-shelf, legacy applications. We follow Rinard et al. [14] in
defining a repair as a patch consisting of one or more code
changes that, when applied to a program, cause it to pass a
set of test cases (typically including both tests of required
behavior as well as a test case encoding the bug). The test

cases may be human written, taken from a regression test
suite, steps to reproduce an error, or generated automati-
cally. We use the terms “repair” and “patch” interchange-
ably. GenProg does not require formal specifications,
program annotations, or special coding practices. GenProg’s
approach is generic, and the paper reports results demon-
strating that GenProg can successfully repair several types
of defects. This contrasts with related approaches which
repair only a specific type of defect (such as buffer overruns
[15], [16]).

GenProg takes as input a program with a defect and a set of
test cases. GenProg may be applied either to the full program
source or to individual modules. It uses genetic programming
(GP) to search for a program variant that retains required
functionality but is not vulnerable to the defect in question.
GP is a stochastic search method inspired by biological
evolution that discovers computer programs tailored to a
particular task [17], [18]. GP uses computational analogs of
biological mutation and crossover to generate new program
variations, which we call variants. A user-defined fitness
function evaluates each variant; GenProg uses the input test
cases to evaluate the fitness, and individuals with high fitness
are selected for continued evolution. This GP process is
successful when it produces a variant that passes all tests
encoding the required behavior and does not fail those
encoding the bug. Although GP has solved an impressive
range of problems (e.g., [19]), it has not previously been used
either to evolve off-the-shelf legacy software or to patch real-
world vulnerabilities, despite various proposals directed at
automated error repair, e.g., [20].

A significant impediment for GP efforts to date has been
the potentially infinite space that must be searched to find a
correct program. We introduce three key innovations to
address this longstanding problem [21]. First, GenProg
operates at the statement level of a program’s abstract syntax
tree (AST), increasing the search granularity. Second, we
hypothesize that a program that contains an error in one area
likely implements the correct behavior elsewhere [22].
Therefore, GenProg uses only statements from the program

54 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012

. C. Le Goues and W. Weimer are with the Department of Computer Science,
University of Virginia, 85 Engineer’s Way, PO Box 400740, Charlottesville,
VA 22904-4740. E-mail: {legoues, weimer}@cs.virginia.edu.

. T. Nguyen and S. Forrest are with the Department of Computer Science,
University of New Mexico, MSC01 1130, 1 University of New Mexico,
Albuquerque, NM 87131-0001. E-mail: {tnguyen, forrest}@cs.unm.edu.

Manuscript received 16 Mar. 2010; revised 6 Oct. 2010; accepted 21 Sept.
2011; published online 30 Sept. 2011.
Recommended for acceptance by J.M. Atlee and P. Inverardi.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-2010-03-0078.
Digital Object Identifier no. 10.1109/TSE.2011.104.

0098-5589/12/$31.00 ! 2012 IEEE Published by the IEEE Computer Society
Authorized licensed use limited to: Ruhr Universitat Bochum. Downloaded on December 11,2024 at 10:22:41 UTC from IEEE Xplore.  Restrictions apply. 
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Search Based (Generate & Validate) APR
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Buggy ProgramA set of Test
Cases/ Program

Properties

Fault localization

Patch Generation

.

.

.

Patch Validation

Techniques to identify 
statement causing the 
observed bug.
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Search-Based APR Tools
§ GenProg: A generic method for APR
§ SPR: Staged Program Repair with Condition Synthesis
§ History Driven Program repair
§ Prophet: Automatic patch generation by leaning correct code

§ … and many more

Introduction into Automated Program Repair29 
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GenProg
§ Based on Genetic Programming

§ A programming model for evolving programs
§ Ideology and terminology of biological evolution to 

address program evolution
§ Starting from a population of unfit (buggy) program — 

apply operations analogous to natural genetic processes 
— define a fitness function to evaluate evolved program

§ Fitness function evaluates the quality of an evolved 
program

§ Given an input test suite of passing and failing test, creates 
mutated programs (repairs) that solves the failing test
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GenProg: A Generic Method
for Automatic Software Repair

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, Senior Member, IEEE, and Westley Weimer

Abstract—This paper describes GenProg, an automated method for repairing defects in off-the-shelf, legacy programs without formal

specifications, program annotations, or special coding practices. GenProg uses an extended form of genetic programming to evolve a

program variant that retains required functionality but is not susceptible to a given defect, using existing test suites to encode both the
defect and required functionality. Structural differencing algorithms and delta debugging reduce the difference between this variant and

the original program to a minimal repair. We describe the algorithm and report experimental results of its success on 16 programs
totaling 1.25 M lines of C code and 120K lines of module code, spanning eight classes of defects, in 357 seconds, on average. We

analyze the generated repairs qualitatively and quantitatively to demonstrate that the process efficiently produces evolved programs
that repair the defect, are not fragile input memorizations, and do not lead to serious degradation in functionality.

Index Terms—Automatic programming, corrections, testing and debugging.

Ç

1 INTRODUCTION

SOFTWARE quality is a pernicious problem. Mature soft-
ware projects are forced to ship with both known and

unknown bugs [1] because the number of outstanding
software defects typically exceeds the resources available to
address them [2]. Software maintenance, of which bug
repair is a major component [3], [4], is time-consuming and
expensive, accounting for as much as 90 percent of the cost
of a software project [5] at a total cost of up to $70 billion per
year in the US [6], [7]. Put simply: Bugs are ubiquitous, and
finding and repairing them are difficult, time-consuming,
and manual processes.

Techniques for automatically detecting software flaws
include intrusion detection [8], model checking and light-
weight static analyses [9], [10], and software diversity
methods [11], [12]. However, detecting a defect is only half
of the story: Once identified, a bug must still be repaired. As
the scale of software deployments and the frequency of
defect reports increase [13], some portion of the repair
problem must be addressed automatically.

This paper describes and evaluates Genetic Program
Repair (“GenProg”), a technique that uses existing test cases
to automatically generate repairs for real-world bugs in off-
the-shelf, legacy applications. We follow Rinard et al. [14] in
defining a repair as a patch consisting of one or more code
changes that, when applied to a program, cause it to pass a
set of test cases (typically including both tests of required
behavior as well as a test case encoding the bug). The test

cases may be human written, taken from a regression test
suite, steps to reproduce an error, or generated automati-
cally. We use the terms “repair” and “patch” interchange-
ably. GenProg does not require formal specifications,
program annotations, or special coding practices. GenProg’s
approach is generic, and the paper reports results demon-
strating that GenProg can successfully repair several types
of defects. This contrasts with related approaches which
repair only a specific type of defect (such as buffer overruns
[15], [16]).

GenProg takes as input a program with a defect and a set of
test cases. GenProg may be applied either to the full program
source or to individual modules. It uses genetic programming
(GP) to search for a program variant that retains required
functionality but is not vulnerable to the defect in question.
GP is a stochastic search method inspired by biological
evolution that discovers computer programs tailored to a
particular task [17], [18]. GP uses computational analogs of
biological mutation and crossover to generate new program
variations, which we call variants. A user-defined fitness
function evaluates each variant; GenProg uses the input test
cases to evaluate the fitness, and individuals with high fitness
are selected for continued evolution. This GP process is
successful when it produces a variant that passes all tests
encoding the required behavior and does not fail those
encoding the bug. Although GP has solved an impressive
range of problems (e.g., [19]), it has not previously been used
either to evolve off-the-shelf legacy software or to patch real-
world vulnerabilities, despite various proposals directed at
automated error repair, e.g., [20].

A significant impediment for GP efforts to date has been
the potentially infinite space that must be searched to find a
correct program. We introduce three key innovations to
address this longstanding problem [21]. First, GenProg
operates at the statement level of a program’s abstract syntax
tree (AST), increasing the search granularity. Second, we
hypothesize that a program that contains an error in one area
likely implements the correct behavior elsewhere [22].
Therefore, GenProg uses only statements from the program

54 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. 1, JANUARY/FEBRUARY 2012

. C. Le Goues and W. Weimer are with the Department of Computer Science,
University of Virginia, 85 Engineer’s Way, PO Box 400740, Charlottesville,
VA 22904-4740. E-mail: {legoues, weimer}@cs.virginia.edu.

. T. Nguyen and S. Forrest are with the Department of Computer Science,
University of New Mexico, MSC01 1130, 1 University of New Mexico,
Albuquerque, NM 87131-0001. E-mail: {tnguyen, forrest}@cs.unm.edu.

Manuscript received 16 Mar. 2010; revised 6 Oct. 2010; accepted 21 Sept.
2011; published online 30 Sept. 2011.
Recommended for acceptance by J.M. Atlee and P. Inverardi.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-2010-03-0078.
Digital Object Identifier no. 10.1109/TSE.2011.104.

0098-5589/12/$31.00 ! 2012 IEEE Published by the IEEE Computer Society
Authorized licensed use limited to: Ruhr Universitat Bochum. Downloaded on December 11,2024 at 10:22:41 UTC from IEEE Xplore.  Restrictions apply. 
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Initial Population: Selection
§ Selection of individual to serve as parents for next generation
§ Aim to select better performing individuals
§ Various selection techniques

§ Stochastic universal sampling— probability of selection of a parent is directly 
proportional to its fitness

§ Tournament selection—a small subset of population are randomly selected (by a 
tournament) and the most fit member of this subset is selected for next generation

Introduction into Automated Program Repair31 



im Menü über: 
Start > Absatz > 

Listenebene 

Variants Generation: Crossover
§ Program represented as tree structure (mostly as AST)
§ Swap random parts in parents to produce new children 

Introduction into Automated Program Repair32 

By W102102 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=106389498
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Variants Generation: Mutation
§ Various types of mutations (syntactically correct)
§ Intuitively, update (insert, remove, or delete) a parent node to obtain a new child

Introduction into Automated Program Repair33 

By W102102 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=106395515

+
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GenProg: Workflow
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Higher weight 
to the 
statements 
executed 
exclusively on 
failing tests

Fault Localization

Passing test trace

Failing test trace

Mutate

Fitness Function

Accept
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Fault Localization
§ Any statement executed by a negative test case contains an initial weight of 1.0
§ Other statements are assigned weight 0.0

§ these are never modified, i.e., these are consider not faulty
§ The initial weight of statements executed by a negative test case is modified if they 

are also executed by a positive test case
§ Goal is to penalize statements that are more unique to negative tests
§ No additional weights for statements frequencies (e.g., in a loop) 

Introduction into Automated Program Repair35 
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Mutation

Introduction into Automated Program Repair36 

Ranked Fault 
locations

Mutation 
Operators

Choose a statement 
from the same 
program
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Fitness Function
§ Evaluate the quality of a program variant
§ Each successful positive test is weighted by 𝑊𝑃𝑜𝑠𝑇

§ Each successful negative test is weighted by 𝑊𝑁𝑒𝑔𝑇

§ Program variants that do not compile have zero fitness
§ GenProg encode 𝑊𝑃𝑜𝑠𝑇  as 1 and 𝑊𝑁𝑒𝑔𝑇 as 10 in their evaluation setup 

Introduction into Automated Program Repair37 
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Crossover

Introduction into Automated Program Repair38 

swap after the cutoff 
point

C ß Q
D ß P

Crossover
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GenProg: High level Pseudocode

Introduction into Automated Program Repair39 

Localize and 
assign weight

pop_size = 40

Create new population 
using crossover

Mutate the new 
population
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Example

Introduction into Automated Program Repair40 

receive
switch

case 'DHCP'

break
case 'IMAP'

break
default

free
break

send

Delete free(packet);
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Limitations

Introduction into Automated Program Repair41 

§ Overfitting of test cases — repairs that only pass a particular test suite
§ Generated repairs may delete the functionality — pass the test case by removing the 

functionality
§ Limited search space
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Template-based Repair

Introduction into Automated Program Repair42 

§ Pre-defined repair patterns
§ Replace a suspicious program location with defined repair pattern

.1 + if

+
.2 + if return

.3 + if

.4 + if continue

.5 + if
+ IllegalArgumentException

Insert Null point checker

Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019. TBar: revisiting template-based automated program repair. https://doi.org/10.1145/3293882.3330577
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Semantic-based APR
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Abstract—Debugging consumes significant time and effort in

any major software development project. Moreover, even after

the root cause of a bug is identified, fixing the bug is non-trivial.

Given this situation, automated program repair methods are of

value. In this paper, we present an automated repair method

based on symbolic execution, constraint solving and program

synthesis. In our approach, the requirement on the repaired code

to pass a given set of tests is formulated as a constraint. Such

a constraint is then solved by iterating over a layered space

of repair expressions, layered by the complexity of the repair

code. We compare our method with recently proposed genetic

programming based repair on SIR programs with seeded bugs,

as well as fragments of GNU Coreutils with real bugs. On these

subjects, our approach reports a higher success-rate than genetic

programming based repair, and produces a repair faster.

I. INTRODUCTION

Bug fixing continues to be a mostly manual, time consum-
ing, and therefore expensive activity in software development.
Therefore, automated techniques to repair buggy programs
can be of tremendous value. In particular, given that compute
cycles are cheap and abundant, it makes sense to investigate
techniques that help shift the “heavy lifting” of program repair
from the human to the computer. While a programmer might
not blindly trust a computer-generated fix to her code, her
task can become considerably easier: rather than figure out a
fix, just verify that an automatically generated fix is correct.
Not surprisingly, researchers have recently started looking into
automated program repair tools [1]–[3].

We focus on general purpose programs, for which a test
suite is available as a way to tell whether the program is
working correctly (i.e. it passes all the tests) or not (i.e. there
exists a failing test), but otherwise no formal specification
of correct behavior is available; this is generally the case in
practice (by contrast, kernels that manipulate data structures
often do have specifications, and automatic repair on data
structure programs have been well studied, for example see [4],
[5]). A successful repair would be a modification of the
program such that it passes all the tests in the test suite.

One of the most successful techniques in recent work that
works on general programs is based on syntactic search. The
premise behind this technique is that, once we know where the
defective expression is in the program, a correct expression
may be present syntactically at another place in the program,
so it is a matter of searching over a space of replacements
from among existing expressions.1 The technique uses genetic
programming technique for searching over this space, and has

1This is an oversimplification, but broadly speaking this is the idea.

been shown to work for large programs [6]. The limitation
of this technique is that the correct expression should be
present in the program; the technique cannot “synthesize” an
appropriate expression from variables and constants.

An obvious response to the limitation would be a search
over a space of syntactic expressions, without consideration of
whether those expressions appear elsewhere in the program.
Such an approach would be more in the flavor of sketching [7],
[8]. However, unless the space of repair expression is fixed
upfront (possibly as a set of templates), such a technique will
not work. Furthermore, as our experiments show, enumerating
over the set of possible repair templates is inefficient.

In this paper, we explore a constraint based semantic
approach towards program repair. The repair constraints are
generated by our desire to have the repaired program pass
the given test cases. Thus, given a program location to be
fixed, we derive constraints on the expression to appear in
the program location, in order to have the changed program
pass all the given tests. The repair constraints are generated
via (controlled) symbolic execution and the expression to be
repaired is obtained via program synthesis. We report that,
for certain kinds of program and bugs, the semantics-based
approach can not only have a higher-success rate than a
syntactic search-based approach, but also be able to produce
a repair faster. At the same time, we do believe that symbolic
execution imposes certain scalability limitations on the size of
programs we can handle.

Our approach is a combination of three existing techniques.
• Fault isolation, i.e. where to fix the problem. The tech-

nique uses the ranking produced by a statistical fault
isolation [9] tool (it shares this step with the search-based
techniques.) Our approach examines one buggy statement

at a time from a ranked suspicion report of statements.
• Statement-level specification inference. We automatically

discover the correct specification of the buggy statement.
We use an idea similar to the one used in angelic
debugging [10] in converting an expression to a non-
deterministic expression. This step allows us to create,
for each input to the buggy statement, the output that
would have resulted in the test passing.

• Program synthesis. The third idea is to use component-
based synthesis idea [11] to synthesize an expression that
conforms to the specification discovered before.

The inter-play of the second and third steps is the primary
novelty of our repair tool. The statement-level specification
narrows the search space significantly, and sets up the problem
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Abstract
Automated program repair reduces the manual e�ort in �x-
ing program errors. However, existing repair techniques
modify a buggy program such that it passes given tests.
Such repair techniques do not discriminate between correct
patches and patches that over�t the available tests (breaking
untested but desired functionality).We propose an integrated
approach for detecting and discarding over�tting patches via
systematic co-exploration of the patch space and input space.
We leverage concolic path exploration to systematically tra-
verse the input space (and generate inputs), while ruling out
signi�cant parts of the patch space. Given a long enough
time budget, this approach allows a signi�cant reduction in
the pool of patch candidates, as shown by our experiments.
We implemented our technique in the form of a tool called
‘CPR’ and evaluated its e�cacy in reducing the patch space
by discarding over�tting patches from a pool of plausible
patches. We evaluated our approach for �xing real-world
software vulnerabilities and defects, for �xing functionality
errors in programs drawn from SV-COMP benchmarks used
in software veri�cation, as well as for test-suite guided repair.
In our experiments, we observed a patch space reduction due
to our concolic exploration of up to 74% for �xing software
vulnerabilities and up to 63% for SV-COMP programs. Our
technique presents the viewpoint of gradual correctness —
repair run over longer time leads to less over�tting �xes.

CCS Concepts: • Software and its engineering ! Soft-
ware testing and debugging.
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1 Introduction
Automated Program Repair [14, 24] is an emerging tech-
nology which seeks to rectify errors or vulnerabilities in
software automatically. There are various applications of
automated repair, including improving programmer produc-
tivity, reducing exposure to software security vulnerabilities,
producing self-healing software systems, and even enabling
intelligent tutoring systems for teaching programming.

Since program repair needs to be guided by certain notions
of correctness and formal speci�cations of the program’s
behavior are usually not available, it is common to use test-
suites to guide repair. The goal of automated repair is then
to produce a (minimal) modi�cation of the program so as to
pass the tests in the given test-suite. While test-suite driven
repair provides a practical formulation of the program repair
problem, it gives rise to the phenomenon of “over�tting” [26,
30]. The patched program may pass the tests in the given
test-suite while failing tests outside the test-suite, thereby
over�tting the test data. Such over�tting patches are called
plausible patches because they repair the failing test case(s),
but they are not guaranteed to be correct, since they may
fail tests outside the test-suite guiding the repair. Various
solutions to alleviate the patch over�tting issue have been
studied to date, including symbolic speci�cation inference
[23, 25], machine learning-based prioritization of patches
[2, 20, 21] and fuzzing based test-suite augmentation [7].
These works do not guarantee any notion of correctness
of the patches, and cannot guarantee even the most basic
correctness criteria such as crash freedom.

In this work, we re�ect on the problem of patch over�tting
[22, 26, 30], in our attempt to produce patches which work
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Semantic Repair (Constraint-based Repair)
§ Construct a repair constraint that a program should satisfy
§ Repair problem as a synthesis problem
§ Use semantic approaches, e.g. symbolic execution, to extract the properties for the 

function to be synthesized
§ Synthesize the program that satisfies the repair constraints/program properties  
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Semantic Repair

Buggy Program Fault
Localization

Extract Repair Constraints

Synthesize Repairs using
Constraints solving

Validate

Specification
(e.g., Test)
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An Example
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int 0
int 10 8
input
while

1

Constraint: index < sizeof(buff)
Input à length = 11

while

One potential repair.
Can generate more based on generated constraints.
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Semantic Repair

Buggy Program Fault
Localization

Extract Repair Constraints

Synthesize Repairs using
Constraints solving

Validate

Specification
(e.g., Test)

Symbolic
Execution
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Symbolic Execution
§ introduced by King[1] and Clarke[2]

§ analysis of programs with unspecified inputs, i.e. execute a program with symbolic 
inputs

§ symbolic states represent sets of concrete states
§ for each path, build a path condition

§ condition on inputs – for the execution to follow that path
§ check path condition satisfiability – explore only feasible paths

§ symbolic state
§ symbolic values / expressions for variables
§ path condition
§ instruction pointer

Introduction into Automated Program Repair49 

[1] James C. King. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (July 1976), 385-394.
[2] L. A. Clarke, "A System to Generate Test Data and Symbolically Execute Programs," in IEEE Transactions 
on Software Engineering, vol. SE-2, no. 3, pp. 215-222, Sept. 1976.
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Example: concrete execution
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int x, y;
if (x > y) {
  x = x + y;
  y = x – y;
  x = x – y;
  if (x > y)
    assert false;
}

x = 1, y = 0

code that swaps 2 integers concrete execution path

x > y ? true

x = 1 + 0 = 1

y = 1 – 0 = 1

x = 1 – 1 = 0

0 > 1 ? false

END
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Example: symbolic execution

Introduction into Automated Program Repair51 

int x, y;
if (x > y) {
  x = x + y;
  y = x – y;
  x = x – y;
  if (x > y)
    assert false;
}

[True] x=𝕏, y=𝕐
code that swaps 2 integers

symbolic execution tree

[True] 𝕏>𝕐?  

[𝕏≤𝕐] END  [𝕏>𝕐] x=𝕏+𝕐  

[𝕏>𝕐] y=𝕏+𝕐–𝕐=𝕏  

[𝕏>𝕐] x=𝕏+𝕐-𝕏=𝕐  

[𝕏>𝕐] 𝕐>𝕏 ?  

[𝕏>𝕐ᴧ𝕐≤𝕏] END [𝕏>𝕐ᴧ𝕐>𝕏] assert false

True

True

False

False

unsatisfiable !!!
Hint: solve PCs to obtain test inputs

path condition
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Decision Procedures
§ Used to check path conditions

§ if path condition is unsatisfiable, backtrack
§ solutions of statisfiable constraints used as test inputs

§ SMT solvers
§ Satisfiability Modulo Theories
§ Given a formula first-order logic, with associated background theories, is the formula 

satisfiable?
§ See also:

§ SMTLIB – library for SMT formulas (common format) and tools
§ SMTCOMP – annual competition of SMT solvers
§ Z3 - https://rise4fun.com/z3/tutorial

Introduction into Automated Program Repair52 
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Symbolic Execution: Limitations
§ Path explosion

§ symbolically executing all program path does not scale well!
§ Memory aliasing

§ accessing same memory with difference aliases
§ Arrays

§ Array access with symbolic indexes are difficult to manage

Introduction into Automated Program Repair53 
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SemFix: Program Repair via Semantic Analysis
§ APR technique based on symbolic execution, 

constraints solving, and program synthesis
§ Given a set of test cases

§ requirement for the repair is formulated as a constraint
§ solve the formulated constraint by iterating over a 

space of repair expressions
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Abstract—Debugging consumes significant time and effort in

any major software development project. Moreover, even after

the root cause of a bug is identified, fixing the bug is non-trivial.

Given this situation, automated program repair methods are of

value. In this paper, we present an automated repair method

based on symbolic execution, constraint solving and program

synthesis. In our approach, the requirement on the repaired code

to pass a given set of tests is formulated as a constraint. Such

a constraint is then solved by iterating over a layered space

of repair expressions, layered by the complexity of the repair

code. We compare our method with recently proposed genetic

programming based repair on SIR programs with seeded bugs,

as well as fragments of GNU Coreutils with real bugs. On these

subjects, our approach reports a higher success-rate than genetic

programming based repair, and produces a repair faster.

I. INTRODUCTION

Bug fixing continues to be a mostly manual, time consum-
ing, and therefore expensive activity in software development.
Therefore, automated techniques to repair buggy programs
can be of tremendous value. In particular, given that compute
cycles are cheap and abundant, it makes sense to investigate
techniques that help shift the “heavy lifting” of program repair
from the human to the computer. While a programmer might
not blindly trust a computer-generated fix to her code, her
task can become considerably easier: rather than figure out a
fix, just verify that an automatically generated fix is correct.
Not surprisingly, researchers have recently started looking into
automated program repair tools [1]–[3].

We focus on general purpose programs, for which a test
suite is available as a way to tell whether the program is
working correctly (i.e. it passes all the tests) or not (i.e. there
exists a failing test), but otherwise no formal specification
of correct behavior is available; this is generally the case in
practice (by contrast, kernels that manipulate data structures
often do have specifications, and automatic repair on data
structure programs have been well studied, for example see [4],
[5]). A successful repair would be a modification of the
program such that it passes all the tests in the test suite.

One of the most successful techniques in recent work that
works on general programs is based on syntactic search. The
premise behind this technique is that, once we know where the
defective expression is in the program, a correct expression
may be present syntactically at another place in the program,
so it is a matter of searching over a space of replacements
from among existing expressions.1 The technique uses genetic
programming technique for searching over this space, and has

1This is an oversimplification, but broadly speaking this is the idea.

been shown to work for large programs [6]. The limitation
of this technique is that the correct expression should be
present in the program; the technique cannot “synthesize” an
appropriate expression from variables and constants.

An obvious response to the limitation would be a search
over a space of syntactic expressions, without consideration of
whether those expressions appear elsewhere in the program.
Such an approach would be more in the flavor of sketching [7],
[8]. However, unless the space of repair expression is fixed
upfront (possibly as a set of templates), such a technique will
not work. Furthermore, as our experiments show, enumerating
over the set of possible repair templates is inefficient.

In this paper, we explore a constraint based semantic
approach towards program repair. The repair constraints are
generated by our desire to have the repaired program pass
the given test cases. Thus, given a program location to be
fixed, we derive constraints on the expression to appear in
the program location, in order to have the changed program
pass all the given tests. The repair constraints are generated
via (controlled) symbolic execution and the expression to be
repaired is obtained via program synthesis. We report that,
for certain kinds of program and bugs, the semantics-based
approach can not only have a higher-success rate than a
syntactic search-based approach, but also be able to produce
a repair faster. At the same time, we do believe that symbolic
execution imposes certain scalability limitations on the size of
programs we can handle.

Our approach is a combination of three existing techniques.
• Fault isolation, i.e. where to fix the problem. The tech-

nique uses the ranking produced by a statistical fault
isolation [9] tool (it shares this step with the search-based
techniques.) Our approach examines one buggy statement

at a time from a ranked suspicion report of statements.
• Statement-level specification inference. We automatically

discover the correct specification of the buggy statement.
We use an idea similar to the one used in angelic
debugging [10] in converting an expression to a non-
deterministic expression. This step allows us to create,
for each input to the buggy statement, the output that
would have resulted in the test passing.

• Program synthesis. The third idea is to use component-
based synthesis idea [11] to synthesize an expression that
conforms to the specification discovered before.

The inter-play of the second and third steps is the primary
novelty of our repair tool. The statement-level specification
narrows the search space significantly, and sets up the problem
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Workflow of SemFix
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KLEE is a symbolic execution engine built on top of the LLVM Compiler infrastructure:
https://klee.github.io

https://klee.github.io
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Example
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1. int is_upward_preferred int int int
int
if

4. //fix: bias=up_sep+100
else

if
8. return 1

else
return 0

Test Suite observing the fault

Code excerpt from Tcas (Traffic collision avoidance system)
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Fault Localization (using Tarantula)

Introduction into Automated Program Repair57 

1. int is_upward_preferred int int int
int
if

4. //fix: bias=up_sep+100
else

if
8. return 1

else
return 0

Test Suite observing the fault

Code excerpt from Tcas (Traffic collision avoidance system)

Faulty Statements 
along with their 
rankings
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Repair Synthesis and Symbolic Execution

Introduction into Automated Program Repair58 

1. int is_upward_preferred int int int
int
if

4. //fix: bias=up_sep+100
else

if
8. return 1

else
return 0

Code excerpt from Tcas (Traffic collision avoidance system)

Faulty Statement Repair Expression Available vars

int int int
int

Uninitialized, thus non-usable

int int int
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Repair Synthesis and Symbolic Execution
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int int int
Repair Expression

find the constraint to be satisfied by f(…) to pass all test

Symbolic execution based on Test 2

1. int is_upward_preferred int int int

int
if

4. //fix: bias=up_sep+100
else

if
8. return 1

else
return 0
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1. int is_upward_preferred int int int

int
if

4. //fix: bias=up_sep+100
else

if
8. return 1

else
return 0

𝑋 > 110 More constraints from given tests

Repair Synthesis and Symbolic Execution
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Repair Synthesis and Symbolic Execution

(𝑓(1,11,110) > 110 ∧ 𝑓(1,0,100) ≤ 100 ∧ 𝑓(1,−20,60) > 60)

Repair Constraint to satisfy

Component-Based Program Synthesis

constants, +, -, …

Ingredients 

𝑓(𝑖𝑛ℎ𝑖𝑏𝑖𝑡, 𝑢𝑝_𝑠𝑒𝑝, 𝑑𝑜𝑤𝑛_𝑠𝑒𝑝) = 𝑢𝑝_𝑠𝑒𝑝 + 100

𝑓(𝑖𝑛ℎ𝑖𝑏𝑖𝑡, 𝑢𝑝_𝑠𝑒𝑝, 𝑑𝑜𝑤𝑛_𝑠𝑒𝑝) = 𝑢𝑝_𝑠𝑒𝑝 − (−100)

.

.

.
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SemFix: Highlights
§ Generate repairs by modifying only one statement
§ Generated repair depends on the given test suite
§ Synthesize expression only on the right hand side of assignments/branch predicates
§ The generated repair has one of the following two forms:

§ 𝑥=𝑓_𝑏𝑢𝑔𝑔𝑦 (...) → 𝑥=𝑓(...)
§ 𝑖𝑓(𝑓_𝑏𝑢𝑔𝑔𝑦) → 𝑖𝑓(𝑓(...))

Introduction into Automated Program Repair62 
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Limitations
§ Accuracy decreases with increasing number of tests
§ Depends on test suite — Overfitting problem
§ Single line repairs only

Introduction into Automated Program Repair63 
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Concolic Program Repair
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plausible 
patches

P2
P3

P4

Input Space Patch Space
initial test case refined patch set

explored path 
(input partition)

correct 
patch 
(set)

P1

infeasbility 
checks in both 

directions

represented with 
abstract patches
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Abstract
Automated program repair reduces the manual e�ort in �x-
ing program errors. However, existing repair techniques
modify a buggy program such that it passes given tests.
Such repair techniques do not discriminate between correct
patches and patches that over�t the available tests (breaking
untested but desired functionality).We propose an integrated
approach for detecting and discarding over�tting patches via
systematic co-exploration of the patch space and input space.
We leverage concolic path exploration to systematically tra-
verse the input space (and generate inputs), while ruling out
signi�cant parts of the patch space. Given a long enough
time budget, this approach allows a signi�cant reduction in
the pool of patch candidates, as shown by our experiments.
We implemented our technique in the form of a tool called
‘CPR’ and evaluated its e�cacy in reducing the patch space
by discarding over�tting patches from a pool of plausible
patches. We evaluated our approach for �xing real-world
software vulnerabilities and defects, for �xing functionality
errors in programs drawn from SV-COMP benchmarks used
in software veri�cation, as well as for test-suite guided repair.
In our experiments, we observed a patch space reduction due
to our concolic exploration of up to 74% for �xing software
vulnerabilities and up to 63% for SV-COMP programs. Our
technique presents the viewpoint of gradual correctness —
repair run over longer time leads to less over�tting �xes.

CCS Concepts: • Software and its engineering ! Soft-
ware testing and debugging.

∗Joint �rst authors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI ’21, June 20–25, 2021, Virtual, Canada
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8391-2/21/06. . . $15.00
h�ps://doi.org/10.1145/3453483.3454051

Keywords: program repair, symbolic execution, program
synthesis, patch over�tting

ACM Reference Format:
Ridwan Shari�deen, Yannic Noller, Lars Grunske, and Abhik Roy-
choudhury. 2021. Concolic Program Repair. In Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Lan-
guage Design and Implementation (PLDI ’21), June 20–25, 2021, Vir-
tual, Canada. ACM, New York, NY, USA, 16 pages. h�ps://doi.org/
10.1145/3453483.3454051

1 Introduction
Automated Program Repair [14, 24] is an emerging tech-
nology which seeks to rectify errors or vulnerabilities in
software automatically. There are various applications of
automated repair, including improving programmer produc-
tivity, reducing exposure to software security vulnerabilities,
producing self-healing software systems, and even enabling
intelligent tutoring systems for teaching programming.

Since program repair needs to be guided by certain notions
of correctness and formal speci�cations of the program’s
behavior are usually not available, it is common to use test-
suites to guide repair. The goal of automated repair is then
to produce a (minimal) modi�cation of the program so as to
pass the tests in the given test-suite. While test-suite driven
repair provides a practical formulation of the program repair
problem, it gives rise to the phenomenon of “over�tting” [26,
30]. The patched program may pass the tests in the given
test-suite while failing tests outside the test-suite, thereby
over�tting the test data. Such over�tting patches are called
plausible patches because they repair the failing test case(s),
but they are not guaranteed to be correct, since they may
fail tests outside the test-suite guiding the repair. Various
solutions to alleviate the patch over�tting issue have been
studied to date, including symbolic speci�cation inference
[23, 25], machine learning-based prioritization of patches
[2, 20, 21] and fuzzing based test-suite augmentation [7].
These works do not guarantee any notion of correctness
of the patches, and cannot guarantee even the most basic
correctness criteria such as crash freedom.

In this work, we re�ect on the problem of patch over�tting
[22, 26, 30], in our attempt to produce patches which work
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(assert (= false (= observation 0)))

Input

Failing test 
case(s)

Fix 
Locations

Buggy 
Program

User 
Specification

........
static int
cvtRaster(TIFF* tif, uint32* raster, uint32 width, uint32 height)
{

uint32 y;
tstrip_t strip = 0;
tsize_t cc, acc;
unsigned char* buf;
uint32 rwidth = roundup(width, horizSubSampling);
uint32 rheight = roundup(height, vertSubSampling);
uint32 nrows = (rowsperstrip > rheight ?

rheight : rowsperstrip);
uint32 rnrows = roundup(nrows,vertSubSampling);
if (CONDITION) return 0;
/* potential divide-by-zero error */
cc = rnrows*rwidth + 2 * ((rnrows*rwidth)

/ (horizSubSampling*vertSubSampling));
........

}

CVE-2016-3623:
Divide by Zero in LibTIFF v4.0.6

🏞
e.g., exploit as
TIFF picture

source location, (fix template),
synthesis components

formula about correct behavior
in SMT format

observation
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CPR: Conclusions
§ Challenge 1: correctness

§ overfitting to test cases or scenarios without test cases
§ needs other types of specification, e.g., user-provided constraints

§ Challenge 2: usability (integration into software development)
§ patch presentation à efficient ranking
§ efficient patch generation à rich and abstract patch space
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Learning-based APR
§ Many proposed approaches that learn code transformations from code corpus

§ Neural Machine Translation (NMT)
§ Sequence-to-Sequence Translation

§ The learning based repair techniques do not rely on pre-defined transformation 
operators, enabling them to generate abundant kinds of patches by learning from 
history patches.

§ In case of generating uncompilable or incorrect patches, the auto-generated patches by 
learning-based APR can also be validated using compilers and available test cases just 
like traditional APR techniques. 

§ However, the early learning-based APR also had a main limitation that they had been 
trained on limited number of projects and hence only limited number of 
programming features.
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Abstract
Automated Program Repair (APR) aims to automatically generate
patches for buggy programs. Traditional APR techniques suffer from
a lack of patch variety as they rely heavily on handcrafted or mined
bug fixing patterns and cannot easily generalize to other bug/fix
types. To address this limitation, recent APR work has been focused
on leveraging modern Large Language Models (LLMs) to directly
generate patches for APR. Such LLM-based APR tools work by first
constructing an input prompt built using the original buggy code and
then querying the LLM to either fill-in (cloze-style APR) the correct
code at the bug location or to produce a completely new code snippet
as the patch. While the LLM-based APR tools are able to achieve
state-of-the-art results, they still follow the classic Generate and
Validate (G&V) repair paradigm of first generating lots of patches
by sampling from the same initial prompt and then validating each
one afterwards. This not only leads to many repeated patches that
are incorrect, but also misses the crucial and yet previously ignored
information in test failures as well as in plausible patches.

To address these aforementioned limitations, we propose Cha-
tRepair, the first fully automated conversation-drivenAPR approach
that interleaves patch generation with instant feedback to perform
APR in a conversational style. ChatRepair first feeds the LLMwith
relevant test failure information to start with, and then learns from
both failures and successes of earlier patching attempts of the same bug
for more powerful APR. For earlier patches that failed to pass all tests,
we combine the incorrect patches with their corresponding relevant
test failure information to construct a new prompt for the LLM to
generate the next patch. In this way, we can avoid making the same
mistakes. For earlier patches that passed all the tests (i.e., plausible
patches), we further ask the LLM to generate alternative variations
of the original plausible patches. In this way, we can further build on
and learn from earlier successes to generate more plausible patches
to increase the chance of having correct patches. While our ap-
proach is general, we implement ChatRepair using state-of-the-art
dialogue-based LLM – ChatGPT. Our evaluation on the widely stud-
ied Defects4j dataset shows that ChatRepair is able to achieve the
new state-of-the-art in repair performance, achieving 114 and 48 cor-
rectfixes onDefects4j 1.2 and 2.0 respectively. By calculating the cost
of accessing ChatGPT, we can fix 162 out of 337 bugs for $0.42 each!

ISSTA ’24, September 16–20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0612-7/24/09
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ging.
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1 Introduction
Automated Program Repair (APR) [22, 24] is a promising approach
to automatically generate patches for bugs in software. Traditional
APR tools often use the Generate and Validate (G&V) [44] paradigm
to first generate a large set of candidate patches and then validate
each one against the original test suite to discover a set of plausible
patches (which pass all the tests). These plausible patches are then
given to the developers to find a correct patch that correctly fixes
the underlying bug. Traditional APR techniques can be categorized
into template-based [23, 26, 40, 41, 49], heuristic-based [35, 37, 67]
and constraint-based [16, 34, 43, 50] ones. Among these traditional
techniques, template-based APR tools, using handcrafted or mined
repair templates to match and fix buggy code patterns, have been
regarded as the state-of-the-art [3, 23, 40]. However, template-based
tools suffer from lackofpatchvariety as they cannot easilygeneralize
to bugs and patterns outside of the list of pre-defined templates.

To address the limitations of traditional APR tools, researchers
have proposed learning-based APR approaches that leverage ad-
vances in Deep Learning. Learning-based approaches are mainly
based on either Neural Machine Translation (NMT) [64] or Large
Language Model (LLM) [65]. NMT-based APR tools [14, 29, 38, 46,
51, 83, 84] view repair as a translation task to turn buggy code into
correct code by training a NMT model [64] using a dataset of his-
torical bug fixes. However, such NMT-based APR tools rely heavily
on its training data, obtained by scraping open-source repositories
for bug fixing commits. This means that not only can the training
dataset be noisy [30] (i.e. containing irrelevant commits/changes)
but also that these NMT-based approaches may not generalize to
bug fix types not seen in their limited training data.

More recently, researchers have started to directly leverage ad-
vanced LLMs for APR [28, 32, 56, 70, 71]. Modern LLMs are trained
on billions of open-source code snippets, demonstrating impressive
performance onmany code-related tasks [6, 12, 21, 74], and can learn
to directly generate code given the surrounding context (due to code

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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§ recent advances in Large 
Language Models (LLM), 
however, show very strong 
results!

§ LLM as component that can 
generate patchess

§ conversational repair to 
improve generated patches
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You are an Automated Program Repair Tool

The following code contains a buggy line that has been removed.
...

int index = this.plot.getIndexOf(this);            
CategoryDataset dataset =

this.plot.getDataset(index);
>>> [ INFILL ] <<<                            

return result
}

This was the original buggy line which was removed by the infill 
location

if (dataset != null) {
The code fails on this test: 
testGreatestSubtypeUnionTypes5()
on this test line: 
assertEquals(NO_OBJECT_TYPE,   
errUnion.getGreatestSubtype(STRING_OBJECT_TYPE));
with the following test error: 
expected:<NoObject> but was:<None>
Please provide the correct line at the infill location.

...
JSType result = builder.build();            
>>> [ INFILL ] <<<                     
    return result;            
} else if (this.isObject() && that.isObject()) {

...

if (result != null) { 

Few-Shot Examples

The correct line at the infill location would be

if (plotDataset == null) {if (!(result instanceof NoObjectType)) {The fixed version is still not correct. 
code has the following compilation error: 
[javac] 745: error: cannot find symbol
Please provide the correct line at the infill location.
error: cannot find symbol (NoObjectType)

Sorry for the mistake, the correct line at the infill 
location should be

if (plotDataset == null) {if (!(result instanceof UnionType)) {
The fixed version is still not correct. 
It still does not fix the original test failure

Buggy Function

...
JSType result = builder.build();            
if (result != null) {                       
    return result;            
} else if (this.isObject() && 
that.isObject()) {

...

Previous Bug Fixes

...

...
+
-- ...

...
+
--

...

...
+
--

compile & test

compile & test

testGreatestSubtypeUnionTypes5()

assertEquals(NO_OBJECT_TYPE,    
errUnion.getGreatestSubtype(STRING_OBJECT_TYPE));

expected:<NoObject> but was:<None>

Failing test info

Error: assertion failed on line: ....
....
Error: assertion failed on line: ....
....

Apologies for the mistake, the correct line at the infill 
location should be

if (plotDataset == null) {if (!result.isNoType()) {
compile & test

The patch passes all tests!

The following code contains a buggy hunk that has been removed.
...

int index = this.plot.getIndexOf(this);            
CategoryDataset dataset =

this.plot.getDataset(index);
>>> [ INFILL ] <<<                            

return result
}

...
JSType result = builder.build();            
>>> [ INFILL ] <<<                     
    return result;            
} else if (this.isObject() && that.isObject()) {

...

The following code contains a bug
...

int index = this.plot.getIndexOf(this);            
CategoryDataset dataset =

this.plot.getDataset(index);
>>> [ INFILL ] <<<                            

return result
}

...
JSType result = builder.build();            
if (result != null) {                     
    return result;            
} else if (this.isObject() && that.isObject()) {

...

This was the original buggy hunk which was removed by the infill 
location

...

The code fails on this test: 
...

single-hunk prompt
single-function prompt

The following code contains a buggy line that has been removed.
...

int index = this.plot.getIndexOf(this);            
CategoryDataset dataset =

this.plot.getDataset(index);
>>> [ INFILL ] <<<                            

return result
}

...
JSType result = builder.build();            
>>> [ INFILL ] <<<                     
    return result;            
} else if (this.isObject() && that.isObject()) {

...

...
It can be fixed by these possible lines

1.
2. ...
3. ...
Please generate an alternative fix line.

if (!result.isNoType()) {
Here is another possible fixed line:

if (plotDataset == ...

compile & 
test

More Plausible Patch

created prompt 
or feedback info ChatGPT output
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Figure 2: Overview of ChatRepair

as the infill instruction prompt. The patch 𝑝 generated can be formal-
ized as the conditional probability: C(𝑝 |pre,<infill>,suf,𝑓0,𝐼𝑓 𝑖𝑙𝑙 )

Toourknowledge,ChatRepair is thefirstwork toapply these test
failures anderrormessages in apurelypromptingmethodbycombin-
ing natural language descriptions of the failure information as input
to the powerfulChatGPTmodel.Different fromprior usage of test ex-
ecution information for repair [77]which relies on customencodings
or handcrafted heuristics, ChatRepair through the use of ChatGPT
via prompting is general not only across different programming
languages but is also not restricted by the types of test information.

3.2 Conversational Repair

We first use the initial prompt created in Section 3.1 to query

ChatGPT to obtain a model output and extract a candidate patch.
Then, we move on to the conversational part where we interleave
patch generation with test validation feedback to prompt future
generation in a conversational manner. Each generated patch by the
model is followed immediately by a patch validation step to compile
and run the patch on the test suite. If the patch failed to pass the test,
weconstructadetailed feedback informationusingboth the incorrect
patch and the failing test as part of the prompt for the next patch
generation. Similar to the initial prompt, test failure information can
help the model understand the failure reason and provide guidance
towards generating the correct fix. In conversation step, we further
combine test failure informationwithpreviously incorrect patches to
not only avoid generating more similarly incorrect patches but also
learn fromthemistakesofpriorgenerations.Werepeat theprocedure
until a plausible patch which passes the entire test suite is generated.

More precisely, we define a conversation exchange as a pair of
patchgeneration andvalidation feedbackof that candidate patch (i.e.,

Algorithm 1: Conversational Repair

1 Function ConversationalRepair:
Input :initialPrompt (initial prompt), oFailure (original failing

test info), testSuite (test suite),ChatGPT,
maxConvLength (max conversation length),maxTries
(max tries), AltInstruct (plausible patch prompt)

Output :pPatches (plausible patches), cost (total cost)

2 pPatches, currentTries, cost←NONE, 0, $0
3 while currentTries <maxTries and pPatches is NONE do
4 currentLength← 0
5 input← initialPrompt
6 while currentLength <maxConvLength do
7 patch, cost←ChatGPT (input)
8 testResult← Validate (patch, testSuite)
9 if testResult is PASS then
10 pPatches← [ patch ]
11 break
12 else if testResult is oFailure then
13 feedback← "still doesn’t fix original failure"
14 else
15 feedback← ConstructPrompt (testResult)

16 input← { input, patch, feedback }
17 currentTries← currentTries +1
18 currentLength← currentLength +1

19 if pPatches is not NONE then
20 while currentTries <maxTries do
21 input← { initialPrompt, pPatches, AltInstruct }
22 patch, cost← ChatGPT (input)
23 testResult← Validate (patch, testSuite)
24 if testResult is PASS and patch not in pPatches then
25 pPatches← pPatches | [ patch ]
26 currentTries← currentTries +1

27 return pPatches, cost

{ , }). Within one repair conversation, the next patch generated
byChatGPT is promptedwith the concatenation of the initial prompt
with all previous conversation exchanges. For example, the 3rd patch
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You are an Automated Program Repair Tool

The following code contains a buggy line that has been removed.
...

int index = this.plot.getIndexOf(this);            
CategoryDataset dataset =

this.plot.getDataset(index);
>>> [ INFILL ] <<<                            

return result
}

This was the original buggy line which was removed by the infill 
location

if (dataset != null) {
The code fails on this test: 
testGreatestSubtypeUnionTypes5()
on this test line: 
assertEquals(NO_OBJECT_TYPE,   
errUnion.getGreatestSubtype(STRING_OBJECT_TYPE));
with the following test error: 
expected:<NoObject> but was:<None>
Please provide the correct line at the infill location.

...
JSType result = builder.build();            
>>> [ INFILL ] <<<                     
    return result;            
} else if (this.isObject() && that.isObject()) {

...

if (result != null) { 

Few-Shot Examples

The correct line at the infill location would be

if (plotDataset == null) {if (!(result instanceof NoObjectType)) {The fixed version is still not correct. 
code has the following compilation error: 
[javac] 745: error: cannot find symbol
Please provide the correct line at the infill location.
error: cannot find symbol (NoObjectType)

Sorry for the mistake, the correct line at the infill 
location should be

if (plotDataset == null) {if (!(result instanceof UnionType)) {
The fixed version is still not correct. 
It still does not fix the original test failure

Buggy Function

...
JSType result = builder.build();            
if (result != null) {                       
    return result;            
} else if (this.isObject() && 
that.isObject()) {

...

Previous Bug Fixes

...

...
+
-- ...

...
+
--

...

...
+
--

compile & test

compile & test

testGreatestSubtypeUnionTypes5()

assertEquals(NO_OBJECT_TYPE,    
errUnion.getGreatestSubtype(STRING_OBJECT_TYPE));

expected:<NoObject> but was:<None>

Failing test info

Error: assertion failed on line: ....
....
Error: assertion failed on line: ....
....

Apologies for the mistake, the correct line at the infill 
location should be

if (plotDataset == null) {if (!result.isNoType()) {
compile & test

The patch passes all tests!

The following code contains a buggy hunk that has been removed.
...

int index = this.plot.getIndexOf(this);            
CategoryDataset dataset =

this.plot.getDataset(index);
>>> [ INFILL ] <<<                            

return result
}

...
JSType result = builder.build();            
>>> [ INFILL ] <<<                     
    return result;            
} else if (this.isObject() && that.isObject()) {

...

The following code contains a bug
...

int index = this.plot.getIndexOf(this);            
CategoryDataset dataset =

this.plot.getDataset(index);
>>> [ INFILL ] <<<                            

return result
}

...
JSType result = builder.build();            
if (result != null) {                     
    return result;            
} else if (this.isObject() && that.isObject()) {

...

This was the original buggy hunk which was removed by the infill 
location

...

The code fails on this test: 
...

single-hunk prompt
single-function prompt

The following code contains a buggy line that has been removed.
...

int index = this.plot.getIndexOf(this);            
CategoryDataset dataset =

this.plot.getDataset(index);
>>> [ INFILL ] <<<                            

return result
}

...
JSType result = builder.build();            
>>> [ INFILL ] <<<                     
    return result;            
} else if (this.isObject() && that.isObject()) {

...

...
It can be fixed by these possible lines

1.
2. ...
3. ...
Please generate an alternative fix line.

if (!result.isNoType()) {
Here is another possible fixed line:

if (plotDataset == ...

compile & 
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Figure 2: Overview of ChatRepair

as the infill instruction prompt. The patch 𝑝 generated can be formal-
ized as the conditional probability: C(𝑝 |pre,<infill>,suf,𝑓0,𝐼𝑓 𝑖𝑙𝑙 )

Toourknowledge,ChatRepair is thefirstwork toapply these test
failures anderrormessages in apurelypromptingmethodbycombin-
ing natural language descriptions of the failure information as input
to the powerfulChatGPTmodel.Different fromprior usage of test ex-
ecution information for repair [77]which relies on customencodings
or handcrafted heuristics, ChatRepair through the use of ChatGPT
via prompting is general not only across different programming
languages but is also not restricted by the types of test information.

3.2 Conversational Repair

We first use the initial prompt created in Section 3.1 to query

ChatGPT to obtain a model output and extract a candidate patch.
Then, we move on to the conversational part where we interleave
patch generation with test validation feedback to prompt future
generation in a conversational manner. Each generated patch by the
model is followed immediately by a patch validation step to compile
and run the patch on the test suite. If the patch failed to pass the test,
weconstructadetailed feedback informationusingboth the incorrect
patch and the failing test as part of the prompt for the next patch
generation. Similar to the initial prompt, test failure information can
help the model understand the failure reason and provide guidance
towards generating the correct fix. In conversation step, we further
combine test failure informationwithpreviously incorrect patches to
not only avoid generating more similarly incorrect patches but also
learn fromthemistakesofpriorgenerations.Werepeat theprocedure
until a plausible patch which passes the entire test suite is generated.

More precisely, we define a conversation exchange as a pair of
patchgeneration andvalidation feedbackof that candidate patch (i.e.,

Algorithm 1: Conversational Repair

1 Function ConversationalRepair:
Input :initialPrompt (initial prompt), oFailure (original failing

test info), testSuite (test suite),ChatGPT,
maxConvLength (max conversation length),maxTries
(max tries), AltInstruct (plausible patch prompt)

Output :pPatches (plausible patches), cost (total cost)

2 pPatches, currentTries, cost←NONE, 0, $0
3 while currentTries <maxTries and pPatches is NONE do
4 currentLength← 0
5 input← initialPrompt
6 while currentLength <maxConvLength do
7 patch, cost←ChatGPT (input)
8 testResult← Validate (patch, testSuite)
9 if testResult is PASS then
10 pPatches← [ patch ]
11 break
12 else if testResult is oFailure then
13 feedback← "still doesn’t fix original failure"
14 else
15 feedback← ConstructPrompt (testResult)

16 input← { input, patch, feedback }
17 currentTries← currentTries +1
18 currentLength← currentLength +1

19 if pPatches is not NONE then
20 while currentTries <maxTries do
21 input← { initialPrompt, pPatches, AltInstruct }
22 patch, cost← ChatGPT (input)
23 testResult← Validate (patch, testSuite)
24 if testResult is PASS and patch not in pPatches then
25 pPatches← pPatches | [ patch ]
26 currentTries← currentTries +1

27 return pPatches, cost

{ , }). Within one repair conversation, the next patch generated
byChatGPT is promptedwith the concatenation of the initial prompt
with all previous conversation exchanges. For example, the 3rd patch
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You are an Automated Program Repair Tool

The following code contains a buggy line that has been removed.
...

int index = this.plot.getIndexOf(this);            
CategoryDataset dataset =

this.plot.getDataset(index);
>>> [ INFILL ] <<<                            

return result
}

This was the original buggy line which was removed by the infill 
location

if (dataset != null) {
The code fails on this test: 
testGreatestSubtypeUnionTypes5()
on this test line: 
assertEquals(NO_OBJECT_TYPE,   
errUnion.getGreatestSubtype(STRING_OBJECT_TYPE));
with the following test error: 
expected:<NoObject> but was:<None>
Please provide the correct line at the infill location.

...
JSType result = builder.build();            
>>> [ INFILL ] <<<                     
    return result;            
} else if (this.isObject() && that.isObject()) {

...

if (result != null) { 

Few-Shot Examples

The correct line at the infill location would be

if (plotDataset == null) {if (!(result instanceof NoObjectType)) {The fixed version is still not correct. 
code has the following compilation error: 
[javac] 745: error: cannot find symbol
Please provide the correct line at the infill location.
error: cannot find symbol (NoObjectType)

Sorry for the mistake, the correct line at the infill 
location should be

if (plotDataset == null) {if (!(result instanceof UnionType)) {
The fixed version is still not correct. 
It still does not fix the original test failure

Buggy Function

...
JSType result = builder.build();            
if (result != null) {                       
    return result;            
} else if (this.isObject() && 
that.isObject()) {

...

Previous Bug Fixes

...

...
+
-- ...

...
+
--

...

...
+
--

compile & test

compile & test

testGreatestSubtypeUnionTypes5()

assertEquals(NO_OBJECT_TYPE,    
errUnion.getGreatestSubtype(STRING_OBJECT_TYPE));

expected:<NoObject> but was:<None>

Failing test info

Error: assertion failed on line: ....
....
Error: assertion failed on line: ....
....

Apologies for the mistake, the correct line at the infill 
location should be

if (plotDataset == null) {if (!result.isNoType()) {
compile & test

The patch passes all tests!

The following code contains a buggy hunk that has been removed.
...

int index = this.plot.getIndexOf(this);            
CategoryDataset dataset =

this.plot.getDataset(index);
>>> [ INFILL ] <<<                            

return result
}

...
JSType result = builder.build();            
>>> [ INFILL ] <<<                     
    return result;            
} else if (this.isObject() && that.isObject()) {

...

The following code contains a bug
...

int index = this.plot.getIndexOf(this);            
CategoryDataset dataset =

this.plot.getDataset(index);
>>> [ INFILL ] <<<                            

return result
}

...
JSType result = builder.build();            
if (result != null) {                     
    return result;            
} else if (this.isObject() && that.isObject()) {

...

This was the original buggy hunk which was removed by the infill 
location

...

The code fails on this test: 
...

single-hunk prompt
single-function prompt

The following code contains a buggy line that has been removed.
...

int index = this.plot.getIndexOf(this);            
CategoryDataset dataset =

this.plot.getDataset(index);
>>> [ INFILL ] <<<                            

return result
}

...
JSType result = builder.build();            
>>> [ INFILL ] <<<                     
    return result;            
} else if (this.isObject() && that.isObject()) {

...

...
It can be fixed by these possible lines

1.
2. ...
3. ...
Please generate an alternative fix line.

if (!result.isNoType()) {
Here is another possible fixed line:

if (plotDataset == ...

compile & 
test

More Plausible Patch

created prompt 
or feedback info ChatGPT output
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Figure 2: Overview of ChatRepair

as the infill instruction prompt. The patch 𝑝 generated can be formal-
ized as the conditional probability: C(𝑝 |pre,<infill>,suf,𝑓0,𝐼𝑓 𝑖𝑙𝑙 )

Toourknowledge,ChatRepair is thefirstwork toapply these test
failures anderrormessages in apurelypromptingmethodbycombin-
ing natural language descriptions of the failure information as input
to the powerfulChatGPTmodel.Different fromprior usage of test ex-
ecution information for repair [77]which relies on customencodings
or handcrafted heuristics, ChatRepair through the use of ChatGPT
via prompting is general not only across different programming
languages but is also not restricted by the types of test information.

3.2 Conversational Repair

We first use the initial prompt created in Section 3.1 to query

ChatGPT to obtain a model output and extract a candidate patch.
Then, we move on to the conversational part where we interleave
patch generation with test validation feedback to prompt future
generation in a conversational manner. Each generated patch by the
model is followed immediately by a patch validation step to compile
and run the patch on the test suite. If the patch failed to pass the test,
weconstructadetailed feedback informationusingboth the incorrect
patch and the failing test as part of the prompt for the next patch
generation. Similar to the initial prompt, test failure information can
help the model understand the failure reason and provide guidance
towards generating the correct fix. In conversation step, we further
combine test failure informationwithpreviously incorrect patches to
not only avoid generating more similarly incorrect patches but also
learn fromthemistakesofpriorgenerations.Werepeat theprocedure
until a plausible patch which passes the entire test suite is generated.

More precisely, we define a conversation exchange as a pair of
patchgeneration andvalidation feedbackof that candidate patch (i.e.,

Algorithm 1: Conversational Repair

1 Function ConversationalRepair:
Input :initialPrompt (initial prompt), oFailure (original failing

test info), testSuite (test suite),ChatGPT,
maxConvLength (max conversation length),maxTries
(max tries), AltInstruct (plausible patch prompt)

Output :pPatches (plausible patches), cost (total cost)

2 pPatches, currentTries, cost←NONE, 0, $0
3 while currentTries <maxTries and pPatches is NONE do
4 currentLength← 0
5 input← initialPrompt
6 while currentLength <maxConvLength do
7 patch, cost←ChatGPT (input)
8 testResult← Validate (patch, testSuite)
9 if testResult is PASS then
10 pPatches← [ patch ]
11 break
12 else if testResult is oFailure then
13 feedback← "still doesn’t fix original failure"
14 else
15 feedback← ConstructPrompt (testResult)

16 input← { input, patch, feedback }
17 currentTries← currentTries +1
18 currentLength← currentLength +1

19 if pPatches is not NONE then
20 while currentTries <maxTries do
21 input← { initialPrompt, pPatches, AltInstruct }
22 patch, cost← ChatGPT (input)
23 testResult← Validate (patch, testSuite)
24 if testResult is PASS and patch not in pPatches then
25 pPatches← pPatches | [ patch ]
26 currentTries← currentTries +1

27 return pPatches, cost

{ , }). Within one repair conversation, the next patch generated
byChatGPT is promptedwith the concatenation of the initial prompt
with all previous conversation exchanges. For example, the 3rd patch

823



im Menü über: 
Start > Absatz > 

Listenebene 

Introduction into Automated Program Repair73 

Automated Program Repair via Conversation ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 1: Correct fixes on Defects4j

Dataset ChartRepair BaseChatGPT CodexRepair FitRepair AlphaRepair SelfAPR RewardRepair Recoder TBar CURE

Chart 15 9 9 8 9 7 5 10 11 10
Closure 37 23 30 29 23 19 15 21 16 14
Lang 21 15 22 19 13 10 7 11 13 9
Math 32 25 29 24 21 22 19 18 22 19
Mockito 6 6 6 6 5 3 3 2 3 4
Time 3 2 3 3 3 3 1 3 3 1

D4J 1.2 114 80 99 89 74 64 50 65 68 57

D4J 2.0 48 25 31 44 36 31 25 11 8 -

Table 2: Correct fixes on QuixBugs

QuixBugs
Chat

Repair

Base
ChatGPT

Codex
Repair

Alpha
Repair

CoCoNuT

Python 40 40 40 27 19
Java 40 40 38 28 13

Table 3: Correct fixes using three repair settings

Tools
D4J 1.2 Quixbugs-Py Quixbugs-J

SL SH SF SL SH SF SL SH SF

ChatRepair 57 79 76 39 40 40 36 37 39
BaseChatGPT 41 55 45 38 37 35 33 36 39
CodexRepair 39 62 63 39 39 37 34 34 32

Figure 6: Plausible generation example

Table 3 shows the results of ChatRepair against the two base-
lines on Defects4j 1.2 and two QuixBugs datasets. Interestingly, we
first observe that the base ChatGPTmodel performs even slightly
worse than CodexRepair on the real-world benchmark of Defects4j
1.2. We theorize that this is because ChatGPT is not designed or
directly fine-tuned for code generation like Codex. As such, directly
using ChatGPT in a similar fashion to prior LLM-based APR tools
that solely sample from the same initial prompt without additional
information does not yield impressive improvements [79]. On the
other hand, by using ChatRepair, which combines the powerful di-
alogue/instruction understanding ability of ChatGPT with dynamic
feedback, ChatRepair is able to better leverage the previously ig-
nored test failure information and earlier patch attempts to better
perform APR. Codex on the contrary, is designed mainly for code
completion and lacks the ability to be used in a conversational man-
ner. In summary, for each individual repair setting, ChatRepair is
able to achieve the highest number of bugs fixed compared to both
state-of-the-art CodexRepair and running base ChatGPT.

Additionally, the improvement inmore correctfixes does not only
come from the conversational and validation feedback aspect but is
also contributed by our plausible patch generation step. Recall that
once a plausible patch is generated, we directly use that patch to
generatemore plausible patches by askingChatGPT to provide other
variations of the patch. In summary, plausible patch generation is
able to add on average an additional 9.4, 16.6, 5.5 plausible patches,
and improve the number of correctly fixed bugs in single-line, single-
hunk, and single-function repair scenarios by 4, 7, 2 respectively
on Defects4j 1.2. This improvement demonstrates the usefulness of

our proposed approach in leveraging the important information in
plausible patches to generate more patches leading to a correct fix.

Figure 6 shows an example of a correct fix (Closure-125) by Cha-
tRepairwhich was initially only plausible and then became correct
after guiding ChatGPT to learn from the earlier plausible patch. We
see that the initial plausible patchproducedbyChatRepair is indeed
able to pass the developer tests by checking if fnType is a constructor.
However, the testsuite does not cover all corner cases and the actual
correct fix involves checking an additional condition of an interface.
By using the plausible patch generation, ChatRepair does not have
to start from scratch (using only the buggy code) but instead can
build on the knowledge already obtained in the first plausible patch.
In this bug fix, ChatRepair adds the additional condition required
to correctly fix by learning from the original plausible patch.

5.3 RQ3: Configurations of ChatRepair
We investigate the different configurations of ChatRepair. Specif-
ically we examine the important parameters of (1) initial prompt
used, (2) feedback response provided and (3) maximum conversation
length. Due to the substantial cost of invoking the ChatGPTAPImul-
tiple times for each dimension of our ablation study, we focus on the
80 single-line bugswithinDefects4j 1.2. Also,we analyze the number
of plausible fixes produced instead of correct fixes in this RQ due to
the intensivemanual efforts involved inpatch inspection. Eachof our
ablation experiments uses the default setting described in Section 4.1
exceptweuse zero-shot (notprovidinganyprior bugfixexamples) by
default since it can best illustrate the effect of individual components
and make it easier for studying the impact of few-shot examples.

Table 4: Initial prompt variations

Initial Prompt #P Avg. # tries Avg. $

BasePrompt 55 22.53 $0.069
TestName+ErrMsg 59 22.47 $0.072
TestName+ErrMsg+FailLine 64 21.86 $0.061
TestName+ErrMsg+TestBody 61 23.42 $0.083

You are a helpful assistant 64 24.17 $0.074
You are an APR tool 64 21.86 $0.061

0-shot 64 21.86 $0.061
1-shot 65 9.91 $0.072
2-shot 65 9.87 $0.085

5.3.1 Initial Prompt. In addition to our default initial prompt given
toChatGPT,wealsoevaluate several alternativevariations.Eachvari-
ation attempts to illustrate some key aspects of information which
can be helpful for ChatGPT during the repair process. Table 4 shows
the resultsof thedifferent initialprompts.RowBasePrompt refers to
the prompt where we only indicate the code contains a bug and asks
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Abstract
Researchers have made significant progress in automating the soft-
ware development process in the past decades. Automated tech-
niques for issue summarization, bug reproduction, fault localiza-
tion, and program repair have been built to ease the workload of
developers. Recent progress in Large Language Models (LLMs) has
significantly impacted the development process, where developers
can use LLM-based programming assistants to achieve automated
coding. Nevertheless, software engineering involves the process
of program improvement apart from coding, specifically to enable
software maintenance (e.g. program repair to fix bugs) and software
evolution (e.g. feature additions). In this paper, we propose an auto-
mated approach for solving Github issues to autonomously achieve
program improvement. In our approach called AutoCodeRover,
LLMs are combined with sophisticated code search capabilities, ul-
timately leading to a program modification or patch. In contrast to
recent LLM agent approaches from AI researchers and practitioners,
our outlook is more software engineering oriented. We work on a
program representation (abstract syntax tree) as opposed to view-
ing a software project as a mere collection of files. Our code search
exploits the program structure in the form of classes/methods to en-
hance LLM’s understanding of the issue’s root cause, and effectively
retrieve a context via iterative search. The use of spectrum-based
fault localization using tests, further sharpens the context, as long
as a test-suite is available. Experiments on the recently proposed
SWE-bench-lite (300 real-life Github issues) show increased efficacy
in solving Github issues (19% on SWE-bench-lite), which is higher
than the efficacy of the recently reported Swe-agent. Interestingly,
our approach resolved 57 GitHub issues in about 4 minutes each
(pass@1), whereas developers spent more than 2.68 days on av-
erage. In addition, AutoCodeRover achieved this efficacy with
significantly lower cost (on average, $0.43 USD), compared to other
baselines.We posit that our workflow enables autonomous software
engineering, where, in future, auto-generated code from LLMs can
be autonomously improved.

ISSTA ’24, September 16–20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680384
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• Software and its engineering→ Automatic programming;
Maintaining software; Software testing and debugging; •Com-
puting methodologies→ Natural language processing.
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ware engineering, autonomous software improvement
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1 Beyond Automatic Programming
Automating software engineering tasks has long been a vision
among software engineering researchers and practitioners. One of
the key challenges has been the handling of ambiguous natural lan-
guage requirements, in the process of automatic programming. In
addition, there has been progress in some other software engineer-
ing activities such as automated test generation [5, 7], automated
program repair [13], and so on.

Recent progress in large language models (LLMs) and the ap-
pearance of tools like Github Copilot [32] hold significant promise
in automatic programming. This progress immediately raises the
question of whether such automatically generated code can be
trusted to be integrated into software projects, and if not, what
improvements to the technology are needed. One possibility is to
automatically repair generated code to achieve trust. This brings
out the importance of automating program repair tasks towards
achieving the vision of autonomous software engineering.

Given this motivation of automating program repair, and the
large number of hours developers often spend manually fixing
bugs, we looked into the possibility of fully autonomous program
improvement. Specifically, we feel that bug fixing and feature addi-
tion are the two key categories of tasks that a development team
may focus on when maintaining an existing software project. To
achieve this goal, we proposed an approach that augments LLM
with context knowledge from the code repository. We call our tool
AutoCodeRover.

Technically our solution works as follows. Given a real-life
GitHub issue, LLM first analyzes the attached natural language de-
scription to extract keywords that may represent files/classes/meth-
ods/code snippets in the codebase. Once these keywords are identi-
fied, we employ a stratified strategy for the LLM agent to retrieve

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Abstract—Automated program repair has emerged as

a powerful technique to mitigate the impact of software

bugs on system reliability and user experience. This paper

introduces RepairAgent, the first work to address the pro-

gram repair challenge through an autonomous agent based

on a large language model (LLM). Unlike existing deep

learning-based approaches, which prompt a model with a

fixed prompt or in a fixed feedback loop, our work treats

the LLM as an agent capable of autonomously planning

and executing actions to fix bugs by invoking suitable tools.

RepairAgent freely interleaves gathering information about

the bug, gathering repair ingredients, and validating fixes,

while deciding which tools to invoke based on the gathered

information and feedback from previous fix attempts. Key

contributions that enable RepairAgent include a set of

tools that are useful for program repair, a dynamically

updated prompt format that allows the LLM to interact

with these tools, and a finite state machine that guides the

agent in invoking the tools. Our evaluation on the popular

Defects4J dataset demonstrates RepairAgent’s effectiveness

in autonomously repairing 164 bugs, including 39 bugs

not fixed by prior techniques. Interacting with the LLM

imposes an average cost of 270,000 tokens per bug, which,

under the current pricing of OpenAI’s GPT-3.5 model,

translates to 14 cents per bug. To the best of our knowledge,

this work is the first to present an autonomous, LLM-based

agent for program repair, paving the way for future agent-

based techniques in software engineering.

I. INTRODUCTION

Software bugs lead to system failures, security vul-
nerabilities, and compromised user experience. Fixing
bugs is a critical task in software development, but
if done manually, demands considerable time and ef-
fort. Automated program repair (APR) promises to dra-
matically reduce this effort by addressing the critical
need for effective and efficient bug resolution in an
automated manner. Researchers and practitioners have
explored various approaches to address the challenge of
automatically fixing bugs [1], including techniques based
on manually designed [2], [3] and (semi-)automatically
extracted [4], [5], [6] fix patterns, based on symbolic
constraints [7], [8], [9], and various machine learning-
based approaches [10], [11], [12], [13], [14], [15], [16].

The current state-of-the-art in APR predominantly
revolves around large language models (LLMs). The
first generation of LLM-based repair uses a one-time
interaction with the model, where the model receives a
prompt containing the buggy code and produces a fixed
version [17], [18]. The second and current generation of
LLM-based repair introduces iterative approaches, which
query the LLM repeatedly based on feedback obtained
from previous fix attempts [19], [20], [21].

A key limitation of current iterative, LLM-based repair
techniques is that their hard-coded feedback loops do
not allow the model to gather information about the
bug or existing code that may provide ingredients to
fix the bug. Instead, these approaches fix the code
context that is provided in the prompt, typically to the
buggy code [19], [21], and sometimes also details about
the test cases that fail [20]. The feedback loop then
executes the tests on different variants of the buggy code
and adds any compilation errors, test failures, or other
output, to the prompt of the next iteration. However,
this approach fundamentally differs from the way human
developers fix bugs, which typically involves a temporal
interleaving of gathering information to understand the
bug, searching code that may be helpful for fixing the
bug, and experimenting with candidate fixes [22], [23].

This paper presents RepairAgent, the first au-
tonomous, LLM-based agent for automated program
repair. Our approach treats the LLM as an autonomous
agent capable of planning and executing actions to
achieve the goal of fixing a bug. We equip the LLM
with a set of bug repair-specific tools that the models can
invoke to interact with the code base in a way similar to
a human developer. For example, RepairAgent has tools
to extract information about the bug by reading specific
lines of code, to gather repair ingredients by searching
the code base, and to propose and validate fixes by
applying a patch and executing test cases. Importantly,
we do not hard-code how and when to use these tools,
but instead let the LLM autonomously decide which tool
to invoke next, based on previously gathered information
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Fig. 2: Overall Workflow of SpecRover.

Fig. 3: Context retrieval in SpecRover.

LLM for exploring the codebase. The LLM agent invokes
the retrieval APIs to investigate the relevant code snippets in
the program. The retrieved code forms the code context for
the current to-be-resolved issue, which can contain definitions
of the relevant classes and methods. After each round of
retrieval API invocations, the LLM agent takes the code
context collected so far and decides whether the context is
sufficient for understanding and resolving the problem. If the
context is deemed sufficient, the retrieval process will end,
and the agent will decide on a set of buggy locations, which
are sent to the patching agent for repairing. Otherwise, the
retrieval process continues until a predefined threshold count
is reached.

One key novelty in SpecRover is the explicit extraction
of function summaries while collecting code snippets during
context retrieval. In SpecRover, whenever a new code snippet
is retrieved with an API and sent to the context retrieval
agent, we explicitly prompt the agent to analyze the “intended
behavior” of this code snippet in the current problem context.
The intended behavior (or specification) is a concise natural-
language summary of how a function should behave to meet
the requirements specified in the high-level problem descrip-

tion. This function-level summary of intended behavior serves
as a local specification to guide the patch construction. The
system-level intended behavior specification given by the user
(i.e. the issue description) is often on how the program should
behave rather than how a unit function should behave. So
we usually do not have the intended behavior of a function.
Although the issue description may provide some “direction”
on the intended behavior of a function - it is usually not
sufficient to guide the patching agent. On the other hand, the
extracted function-level specification (capturing the intended
behavior of the function) serves as a more direct guide to
the patching agent. Instead of giving a set of bug locations
{L1, L2, ..., Ln} to the patching agent to modify, SpecRover
gives the pairs of bug locations and their corresponding lo-
cal specification {(L1, Spec1), (L2, Spec2), ..., (Ln, Specn)}.
The patching agent can then refer to the specifications of
intended behavior and modify code at the function level (so
as to achieve this intended behavior). Intuitively, our approach
decomposes the repository-level issue solving task to several
function-level code modification tasks, in which each function-
level task has a natural language specification. LLMs have
been extensively studied for function-level coding tasks and
have shown promising results in function-level benchmarks
such as HumanEval [11], [12] and MBPP [13]. Therefore,
this task decomposition helps the patching agent of SpecRover
which then has to solve smaller and more manageable tasks.

C. Reviewer Feedback: Reconciling Specifications

Another kind of specification inferred by SpecRover is the
reviewer feedback. To be more precise, the reviewer feedback
can be called a meta-specification: it is a reflection on the
specifications inferred in previous steps. Concretely, given a
patch and a reproducer test, the reviewer agent in SpecRover
will provide feedback, which includes 1) a binary decision
of whether the patch and the reproducer test are correct
respectively; and 2) an explanation for the decisions.

The reviewer feedback contributes to our specification in-
ference practice in two ways. First, it makes the specification
inference iterative. The reviewer feedback will be passed back
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Outlook on other topics
§ Effective and Efficient patch validation

§ How to validate the correctness of the applied patch?
§ Will the patch introduce new problems?
§ Is the patch functionally correct?

§ Trust in APR: what do the developers think?
§ Other non-functional qualities, e.g., security and performance
§ Patch Complexity (single-line, single-hunk/multi-line, multi-hunk)
§ Static Analysis and APR, Fuzzing/Testing and APR
§ Industry Applications: Facebook/Meta and Bloomberg (à APR in the CI pipeline)
§ APR in CS Education
§ A central program repair website — https://program-repair.org
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§ Motivation for Automated Program Repair: Bugs! and the time to fix them!
§ Components of APR
§ Automated Fault Localization
§ Types of Automated Program Repair (APR)

§ Search-based (Generate and Validate) 
§ Semantic-based
§ Learning-based 

§ APR in the era of Large Language Models (LLM)
§ Agentic Workflows for APR


