
                          
  
 
 
   

Master Thesis Topic 
Automated Repair of Neural Networks under 

Data Poisoning Attacks 
 
Motivation and Background: 
While ML components are integrated into modern applications nowadays, we also need to ensure 
the quality of these ML models. Automated testing [1] and automated repair [2] techniques have a 
pivotal role in maintaining these components since re-training is often too expensive. Models like 
neural networks (NN) have deficiencies that can lead to the generation of low-quality, incorrect, or 
insecure code [3]. This thesis project aims to develop a technique to repair a poisoned model with 
realistic (minimal) assumptions. I.e., instead of relying on a test suite or training/test data that can 
be used to infer correctness constraints [4] or to re-train the model, we only assume access to the 
model and the observation of one poisoned input that is misclassified. This setup is similar to 
security repair in conventional software, where we only have a small number of failing test cases and 
no comprehensive test suite.  
 
Student Task and Responsibilities:  

• Make yourself familiar with the state-of-the-art in ML repair. 
• Systematically explore techniques to repair poisoned, feedforward NNs under minimal 

assumptions on the existing test data. 
• Design/select evaluation metrics and conduct a thorough evaluation of your approach on 

poisoned models, e.g., based on MNIST and CIFAR. 
• Analyze the results and document your findings. 

 
Deliverables: 

• Concept of repairing poisoned ML models under realistic assumptions. 
• Prototypical implementation of your concept. 
• Evaluation artifacts (dataset, tools, etc.) 
• Documented findings of the conducted experiments 

 
Pre-Requisites: (Programming Languages, OS, Skills, Papers, etc) 
Strong knowledge in Java, neural networks, and data poisoning attacks is helpful for this project.  
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