
Development of a JUnit Extension for Automated Program Repair
JUnit meets APR

Automated
Program
Repair

+

im Menü über:
Start > Absatz >

Listenebene

Motivation and Background
§ Automated program repair (APR)[1] promises great help for software developers by

automatically generating patches. Various techniques for APR (search-based, semantic-
based, template-based, ML-based) have been proposed in the research community, but only
a few have made their way to the application in practice.

§ This project aims to provide a concrete solution that integrates with existing workflows like
JUnit[2]. JUnit is the standard unit testing framework for Java. Failing test cases usually
indicate a regression error, meaning that an error was introduced with recent changes.

§ An automated repair solution for JUnit would follow up on the failing test case event and
automatically propose a patch for the developer. Therefore, it attempts to merge testing and
repair, which is an essential step to improve software quality at scale.

[1] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated program repair.
 Commun. ACM 62, 12 (December 2019), 56–65. https://doi.org/10.1145/3318162
[2] https://junit.org/junit5/

Studyproject: JUnit meets APR2

https://doi.org/10.1145/3318162
https://junit.org/junit5/

im Menü über:
Start > Absatz >

Listenebene

Student Task and Responsibilities
§ IDE (VSCode or IntelliJ) extension that allows the developer to run tests with JUnit followed

by the automated repair of the failing tests by adapting the corresponding Java code. This
represents the complete workflow from bug detection, fault localization, fix generation, and
patch application/integration.

§ The students are supposed to explore existing APR techniques and should also implement
their own variant/new technique. A starting point can be existing APR libraries[3].

§ The implementation(s) must be evaluated on open-source projects, which can be selected by
the students. The findings of the conducted experiments must be thoroughly documented.

[3] Matias Martinez and Martin Monperrus. ASTOR: a program repair library for Java (demo). ISSTA 2016.
 https://doi.org/10.1145/2931037.2948705

Studyproject: JUnit meets APR3

https://doi.org/10.1145/2931037.2948705

im Menü über:
Start > Absatz >

Listenebene

Minimum Expectation and Extensions
§ The minimum expected result is the implementation of an IDE extension that supports the

described automated functionality generating and integrating a patch for a failing JUnit test
case. The group must integrate/implement at least one APR approach.

§ An important aspect of this project is the design of the implementation, the maintainability,
and the extensibility. Further, the implementation should be properly tested.

§ The group must show the operationability of their implementation with a live demonstration.
§ The usage of Large Language Models (LLMs) in an LLM-based APR component is an option.
§ Potential extension points:

§ The group can implement multiple APR variants and compare their efficacy in different
scenarios.

§ The group can explore various interaction possibilities (e.g., interactive features to present
the generated fault locations or patches), which will help the developer to understand the
problem with the failing test case, select the correct patch, or formulate their own patch.

Studyproject: JUnit meets APR4

Einfärbung einer Spalte/Zeile:

Entwurf / Tabellentools >

Die gewünschte Farbe aus den

Initial Timeplan

Studyproject: JUnit meets APR5

Week 1 (07.10 – 13.10.)M1 Kick-Off & Introduction

Week 2 (14.10 – 20.10.)
Planning, Requirements
Engineering, and Design

Week 3 (21.10 – 27.10.)M2

Week 4 (28.10. – 03.11.)
1st Coding Cycle
Implementation of
prototype (no complete
workflow implementation
expected)

Week 5 (04.11. – 10.11.)

Week 6 (11.11. – 17.11.)

Week 7 (18.11. – 24.11.)M3

Week 8 (25.11. – 01.12.)
2nd Coding Cycle
Implementation of
complete workflow

Week 9 (02.12. – 08.12.)

Week 10 (09.12. – 15.12.)M4

Week 11 (16.12. – 22.12.)

3rd Coding Cycle
Improvements and
extensions

Week 14 (06.01. – 12.12.)

Week 15 (13.01. – 19.01.)
Finalization code (code
freeze after week 16)

Week 16 (20.01. – 26.01.)M5

Week 17 (27.01. – 02.02.)
Final documentation and
report writing/submission

Week 18 (03.02. – 07.02.)M6

Milestones:
• M1: Project Kick-Off
• M2: Code Design Submission
• M3: Demonstration of Prototype

• M4: Demonstration of Complete Workflow
• M5: Final Code Submission
• M6: Final Report Submission

im Menü über:
Start > Absatz >

Listenebene

Working Mode
§ Weekly meetings with advisor (will be arranged taking into account all schedules)
§ Expected are at least one additional weekly group-internal meeting and active discussions on

Slack/Discord
§ Kick-Off Meeting: Monday, 7th October 2024 (details will be announced)

Studyproject: JUnit meets APR6

im Menü über:
Start > Absatz >

Listenebene

Other Information
§ Prerequisites: Programming experience, preferably in Java, is needed for this project.

Further, it would be beneficial to have experience with JUnit Testing and IDE plugin
development. Prior knowledge in automated program repair is not needed.

§ Deliverables: Source code, its documentation, and a publishable report (incl. the evaluation
results), ideally to submit to a conference (e.g., as a Demo paper) or at least publish as a
technical report on arxiv.org.

§ Number of Participants: 2-4
§ Target Group: Bachelor and Master students
§ Industrial partner: None (done at RUB)

Studyproject: JUnit meets APR7

im Menü über:
Start > Absatz >

Listenebene

Contact

Prof. Dr. Yannic Noller

§ Raum: MC 4.114
§ E-Mail: yannic.noller@rub.de
§ Office hours: By Arrangement

§ https://informatik.rub.de/ac-personen/yannic-noller/
§ https://yannicnoller.github.io

Studyproject: JUnit meets APR8

https://informatik.rub.de/ac-personen/yannic-noller/
https://yannicnoller.github.io/

